
1

Why Do Developers Reject Refactorings
in Open-Source Projects?

JEVGENIJA PANTIUCHINA, Software Institute, Università della Svizzera italiana
BIN LIN, Software Institute, Università della Svizzera italiana
FIORELLA ZAMPETTI, University of Sannio
MASSIMILIANO DI PENTA, University of Sannio
MICHELE LANZA, Software Institute, Università della Svizzera italiana
GABRIELE BAVOTA, Software Institute, Università della Svizzera italiana

Refactoring operations are behavior-preserving changes aimed at improving source code quality.
While refactoring is largely considered a good practice, refactoring proposals in pull requests are
often rejected after the code review. Understanding the reasons behind the rejection of refactoring
contributions can shed light on how such contributions can be improved, essentially benefiting
software quality.

This paper reports a study in which we manually coded rejection reasons inferred from 330
refactoring-related pull requests from 207 open-source Java projects. We surveyed 267 developers to
assess their perceived prevalence of these identified rejection reasons, further complementing the
reasons.

Our study resulted in a comprehensive taxonomy consisting of 26 refactoring-related rejection
reasons and 21 process-related rejection reasons. The taxonomy, accompanied with representative
examples and highlighted implications, provides developers with valuable insights on how to ponder
and polish their refactoring contributions, and indicates a number of directions researchers can
pursue toward better refactoring recommenders.
CCS Concepts: • Software and its engineering → Maintaining software.

Additional Key Words and Phrases: Refactoring, empirical software engineering
ACM Reference Format:
Jevgenija Pantiuchina, Bin Lin, Fiorella Zampetti, Massimiliano Di Penta, Michele Lanza, and Gabriele
Bavota. 2021. Why Do Developers Reject Refactorings in Open-Source Projects?. ACM Trans. Softw.
Eng. Methodol. 1, 1, Article 1 (January 2021), 25 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Jevgenija Pantiuchina, jevgenija.pantiuchina@usi.ch, Software Institute, Università della
Svizzera italiana, Lugano, Switzerland; Bin Lin, bin.lin@usi.ch, Software Institute, Università della Svizzera
italiana, Lugano, Switzerland; Fiorella Zampetti, fiorellazampetti@gmail.com, University of Sannio, Ben-
evento, Italy; Massimiliano Di Penta, dipenta@unisannio.it, University of Sannio, Benevento, Italy; Michele
Lanza, michele.lanza@usi.ch, Software Institute, Università della Svizzera italiana, Lugano, Switzerland;
Gabriele Bavota, gabriele.bavota@usi.ch, Software Institute, Università della Svizzera italiana, Lugano,
Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1049-331X/2021/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1:2 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

1 INTRODUCTION
Refactorings are behavior-preserving changes focused on source code quality improvement [32].
As investigated in previous literature [60], there are many reasons to perform refactorings, for
example, improving reusability, understandability, or testability. At the same time, refactoring
has dark sides too. Although refactorings should be behavior-preserving, previous work has
pointed out how refactoring can introduce bugs [24]. Additionally, developers may feel that it
is overly risky to perform refactoring [40]. To mitigate such risks, refactoring-related changes
can undergo a reviewing process before being accepted.

Code review can be performed using modern code review practices and tools: e.g., Gerrit [9],
the Pull Request (PR) review features available in GitHub, or even traditional code inspection
meetings. As an outcome of a code review iteration, the reviewer can accept the proposed
changes, reject them, or leave comments for the change author to address.

There are cases where the reasons for rejection are rather obvious, e.g., test cases (or builds
in general) that fail, the change causes a merge conflict, or, from a planning perspective, it is
decided that it is not the right moment for refactoring. However, there can be reasons, more
intrinsic to the design and implementation decisions made when performing the refactoring,
that influence the rejection.

Pull Request (PR) acceptance has been widely studied [31][34][38][46][61][68]. There is also
work that studied the refactoring process [50], proposed tools to aid refactoring review [33],
pointed out refactoring risks [40] and negative effects [24].

To the best of our knowledge, the existing literature lacks systematic analysis of the
reasons that lead to refactoring changes being rejected or of design and implementation
decisions that developers tend to avoid upon refactoring source code.

Having such knowledge can help developers (which can be project members or occasional
external contributors in the case of open-source projects) to better focus their refactoring
efforts on changes that are useful and welcome, avoiding wasting time. Researchers can
also exploit this knowledge to build better refactoring recommender systems [27] that avoid
recommendations unlikely to be well-received by developers.

Our goal is to shed light on the reasons behind rejected refactoring contributions. We
leverage two sources of information, i.e., PR discussions on GitHub, and developers’ opinions
(from open-source and industry) collected through a survey.

To address this goal, first, we identified closed PRs from 2,057 Java open-source projects
hosted on GitHub, selected using multiple criteria, such as a minimum number of commits and
contributors, and currently active projects. From these projects, we sampled 951 candidate
PRs from 395 systems, potentially contributing refactoring but closed without merging.
Then, each PR was inspected by two independent annotators (from the paper authors) who
either created tags describing the (inferred) reasons for which a PR was rejected or marked
it as a false positive when it was not relevant for our study. After resolving annotation
conflicts, we followed a card-sorting [63] approach to create, from such tags, 22 categories of
refactoring-specific rejection reasons, and 12 rejection categories belonging to process-related
reasons.

After that, we created an online survey aimed at (i) asking the perceived prevalence of the
identified refactoring-specific rejection categories, and (ii) identifying refactoring rejection
reasons we could have missed in our initial analysis. We distributed the survey to open-source
and industrial developers, collecting a total of 267 responses.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:3

Finally, through a further open coding of the additional comments provided in the survey,
we improved our taxonomy, which in the end features 26 refactoring-related rejection reasons
and 21 process-related reasons organized in a hierarchical taxonomy (depicted in Figure 3).1

The collected evidence can (i) serve as a guideline for developers to properly ponder and
craft their refactoring contributions, and (ii) pave the way to better refactoring tools.

2 STUDY DESIGN
The goal of our study is to investigate the reasons why refactoring contributions are rejected.
The context consists of (i) 951 manually-analyzed rejected PRs that contribute refactoring
operations to 395 open-source Java projects hosted on GitHub and (ii) a survey performed
with 267 developers. We focus on systems developed in Java to have a more cohesive set
of projects to study. Also, all authors that have been involved in the manual analysis have
a strong experience with Java, thus ensuring the needed expertise to understand the PRs.
The study aims to answer the following research question:

What are the reasons for rejecting refactoring contributions?
We are interested in identifying the main reasons for which peer reviewers reject refactoring

contributions submitted by developers through a pre-defined procedure e.g., PRs on GitHub.
We answer our research question in two steps. First, we perform a mining-based study

in which we manually analyze 951 rejected refactoring-related PRs to derive a taxonomy
of reasons behind such rejections. Second, we survey 267 developers with the goal of (i)
validating the previously defined taxonomy, i.e., studying the prevalence of the identified
rejection reasons for the perspective of software developers; and (ii) enriching our taxonomy
with additional reasons not identified in the mining-based study. In the following, we describe
the design of the mining-based study and of the developer survey.

2.1 Mining-Based Study
The Java software projects were selected from GitHub using the following selection criteria:

(1) At least ten contributors and more than one year of history, to exclude toy/personal
projects.

(2) At least 500 commits and 50 closed PRs, to exclude projects having a small change
history and that are unlikely to provide useful PRs for our analysis.

(3) Modified at least once in the period from May 2019 to May 2020, to filter out inactive
projects. This criterion is also key for our survey, as we invite developers of the inspected
projects to participate in our study.

We used the GitHub API for identifying the projects. Due to the limitations of the GitHub
API, we first collected projects with a history of more than one year and having at least
one commit between May 2019 and May 2020, which resulted in 10,175 projects. We then
extracted the information related to #commits, #contributors, and #PRs for each project,
and removed those not satisfying all our criteria.

Considering the expensive manual analysis that was to follow, we decided to focus on
projects with at least 70 GitHub stars. This boundary produced 2,057 projects for our study,
a number we consider sufficient for extracting rejected refactoring-related PRs. This only
sets a lower bound rather than a star-based ranking which could bias our dataset with

1While for simplicity we use the phrasing “refactoring rejection reasons”/“process-related reasons”, it is
important to note that these reasons, especially the ones collected through the online survey, are perceived
reasons.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

artificially-popular projects [29]. The list of repositories, together with additional information
(e.g., number of commits, contributors, PRs, etc.) is available in our online appendix [16].

We used the GitHub API to extract PRs from the selected repositories. PRs on GitHub have
the status “CLOSED”, “MERGED”, or “OPEN”. To home in on the rejected contributions
we only collected PRs with the status “CLOSED” and containing keyword “refactor” in the
title or the description. This gave us 2,856,503 PRs. A manual inspection of several dozens
of the identified PRs revealed that more than 80% PRs were false positives. Therefore, we
applied extra filtering strategies to reduce false positives: We removed the PRs (1) not
having keyword “refactor” in the title, (2) without comments from code reviewers, and
(3) containing one of the following keywords in the last comment: “merged”, “merging”,
“squashed”, “superseded”, “rebase”. The last filter was added since we found that the GitHub
APIs indicated as not merged several manually merged PRs. These PRs usually contain one
of the listed keywords in their last comment. In the end, we collected 7,159 PRs.

While collecting the PRs, we only looked at the master/default branch of each project, as
we were interested in identifying issues in the refactored code that did not make it suitable
to be merged there; i.e., a refactoring could be accepted in a branch, but may not be ready
to be merged with the master yet.

2.1.1 Manual Analysis of Rejected Refactoring Discussions in Pull Requests. The 7,159 PRs
obtained from our last step have been used for the qualitative analysis. While these PRs
might still contain false positives (i.e., they were merged manually or they are not related
to refactoring), they are not a source of noise for our work as they will be discarded during
the manual analysis.

Given the large amount of available PRs and limited human resources, we created a
randomly-stratified sample of 951 PRs belonging to 395 projects. The strata represented the
projects, i.e., PRs were sampled across projects proportionally to the number of candidate
PRs from the previous step. The total number of sampled PRs guarantees a significance
interval (margin of error) of ±3% with a confidence level of 99%. The estimation has been
performed applying a sample size (𝑆𝑆) calculation formula for an unknown population [58]:

𝑆𝑆 = 𝑝 ·
(︀

1 − 𝑝
)︀ 𝑍2

𝛼

𝐸2

and 𝑆𝑆𝑎𝑑𝑗 for a known population 𝑝𝑜𝑝:

𝑆𝑆𝑎𝑑𝑗 =
𝑆𝑆

1 + 𝑆𝑆−1
𝑝𝑜𝑝

,

where 𝑝 is the predicted probability of the observation event to occur (we presume it is 0.5
if we do not know it a priori), 𝑍𝛼 is the value of the 𝑍 distribution for a given confidence
level, and 𝐸 is the estimated margin of error (±3%).

To create a taxonomy of refactoring rejection reasons, we followed a card sorting procedure.
More specifically, according to Spencer [63], ours was a team work (i.e., multiple people
formed the theory collectively), open (no predefined categories), and remote (we used online
tools from different locations) card sorting. In the first phase, PRs were labeled with tags
(each PR was independently annotated by two people).

For this purpose, we created a Web App for tagging the selected PRs. The Web App (see
Figure 1) shows to the annotator the PR title and the link to the discussion.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:5

Fig. 1. Web App developed for the tagging process

The annotator has to verify whether: (i) the main goal of the PR was refactoring; (ii) the
refactoring was tangled with other changes; (iii) the closed PR was merged manually; and
(iv) the PR was rejected due to the refactoring or to other reasons.

If the PR is not related to refactoring or was merged, the annotator can tag it as “false
positive”. If the PR was rejected due to performed refactoring action(s), the annotator labels
the PR using one or more existing tags or, if no existing tags fit, creates a new tag. The tag
describes a reason for rejection inferred from the PR comments. During the tagging, the
Web App shows the list of already created tags, which can be reused by an annotator when
inspecting new PRs. In a card sorting strategy, this resembles the process of assigning a
card to a group created by somebody else, and was done to avoid excessive growth of the
number possible tags. Note that an evaluator did not know which tag was assigned to which
PR nor who created it, but only that a tag is available. Thus, such a choice was meant to
help annotators use consistent naming without introducing substantial bias.

Five authors took part in the annotation process. The developed Web App automatically
assigned each PR to at least two of the involved annotators. A “warm-up” round was
performed to help using consistent tags: after each annotator tagged ∼20 PRs, the five
authors discussed the assigned tags and clarified good practices to use during the manual
analysis. At the end of the tagging process, we collected a total of 249 unique tags, each one
reporting a PR rejection reason. After the tagging process, the first author inspected all
tags assigned to the PRs, merging very similar tags. Each conflict was resolved by a third
annotator who was not involved in the tagging of that specific PR. A conflict arose when
only one annotator believed the PR was rejected due to refactoring actions or when the
two annotators used semantically different tags to express the reason for the refactoring
rejection. The third annotator re-inspected the PR and took the decision based on personal
judgment and the tags provided by the two original annotators.

After removing PRs tagged as false positives (585) and those with an unclear rejection
reason (36), we obtained a set of 330 PRs from 207 projects. Such a sample ensures a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

significance interval of ±5% with a confidence level of 95%. Our replication package [16]
reports detailed information about the 207 projects, including: age in days and commits;
size in terms of Java files, ELOC (Effective Lines of Code, excluding comments), and LOC
(including comments); number of contributors in the change history; number of total PRs,
of those having “refactor” in the title that have been closed, and of those having “refactor”
in the title that were closed and merged; number of issues, forks, and watchers.

Overall, out of the 951 PRs we annotated, we had agreement for 660 of them, while the
remaining 291 required a third annotator. We have followed a cooperative, open (i.e., no
predefined categories) card sorting, adopting the process defined by Spencer [63]: Since
categories have not been defined beforehand, the computation of an inter-rater agreement is
not foreseen, because the theory is being formed in such a circumstance. Also, several of our
conflicts were due to different wordings expressing the same concept (e.g., the PR is too
large vs too many changes within a PR).

2.1.2 Creating the First Taxonomy. During the second phase, five authors jointly worked on
the available tags to conduct the card sorting [63] on the tags extracted from the 330 PRs.
The goal was to further merge synonymous tags (i.e., tags having the same meaning) and
group tags into categories. The card sorting was conducted through an iterative process.
First, each author sequentially inspected the tags. Then, after two iterations, all authors
jointly discussed the conflicting cases in the categorizations they performed and assigned
them to appropriate taxonomy categories, creating new ones when needed, and achieving
consistency of category naming, until they felt there was no further improvement to be done.
This process resulted in 22 refactoring-specific rejection reasons, and 12 process-related
rejection reasons, i.e., those not specifically-related to refactoring activities.

2.2 Survey with Developers
After creating the first taxonomy, we surveyed developers to validate the defined categories
and to collect further rejection reasons we could not capture in our manual analysis. Since
our focus is to study refactoring-specific reasons, and since other, process-related PR (or con-
tribution) rejection reasons have also been investigated in previous work [31][34][38][61][68],
we did not ask about the latter. We designed the survey organized in three sections according
to guidelines from social science [35] and software engineering [41][42][43][44][56].

In the first section we asked for the demographic information, i.e., the role played by
the developer in her company/organization choosing between developer, software architect,
technical lead, test analyst/tester/test engineer or specifying a different role; the years
of programming experience in Java; and whether she had ever authored a refactoring
contribution that was rejected or rejected one herself. If the participant answered “no” to
the last two questions, the survey was interrupted (there was no previous experience with
refactoring rejections).

In the second section, we asked participants to provide their agreement level to the
statement “Refactoring contributions are often rejected because R𝑟” for each R𝑟 (refactoring
rejection reason) previously identified, using a 5-level Likert scale answer [52] (from strongly
agree to strongly disagree with a neutral option) or a “I don’t know” answer.

In the last section, respondents could provide, through two free-form text fields, (i)
additional reasons for rejected refactorings not mentioned in our initial list, as well as (ii)
characteristics that a PR implementing a refactoring must have for it to be merged.

We targeted developers through three different channels: (Ch1) mailing lists/forums of
the projects in the mining study and personal emails to developers of the studied projects

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:7

directly involved in a rejected refactoring PR (as reviewers or contributors); (Ch2) personal
knowledge; and (Ch3) social media and Reddit channels.

We collected answers for ten days, reaching 267 completed questionnaires. The roles of the
respondents, and the channel through which we reached them are summarized in Table 1.

Table 1. Survey Respondents.

Role Ch1 Ch2 Ch3 Total

Developer 138 16 6 160
Tech Lead 47 1 48
Architect 35 2 1 38
Other (Consultant, etc.) 18 1 2 21

Total 238 20 9 267

With respect to field experience of the 267 respondents, the whole spectrum is covered
(88: 10+ years, 107: 3-10 years, 68: less than 3 years, 4 did not indicate it).

2.3 Taxonomy Refinement
Five authors ran an open coding procedure on the answers provided by the survey respondents,
in particular to those related to the question in the third section of our survey, where we
asked for additional reasons for rejected refactoring not mentioned in our initial taxonomy.
After a first round of labeling by two independent coders, a third person reviewed them and
assigned a final tag to each entry, defined new categories based on the new tags and added
them to the taxonomy. After defining the categories, we started an iterative process to group
similar categories or define new ones. We obtained 14 new categories for the rejection reasons
(4 refactoring-specific and 9 process-specific), leading to our final taxonomy of 47 motivations
(26 refactoring-specific and 21 process-specific) for rejecting refactoring contributions.

For the last open question in our survey, investigating the characteristics of an acceptable
PR implementing a refactoring, an author went through all the answers to assign a set of
tags to each answer. A different author went through all the defined tags to unify them.

2.4 Presentation and Discussion of the Taxonomy
We present our taxonomy, reporting interesting qualitative examples for each of its categories,
highlighting those identified in the mining-based study and those complemented by our
survey, and discussing implications. For the categories identified from PRs (for which we
asked for the prevalence from the developers’ point of view), we report results through
diverging stacked bar charts.

2.5 Impact of Projects/Contributors Characteristics on the Taxonomy
Projects having different characteristics exhibit a different behavior in terms of accepting or
rejecting refactoring PR. To investigate the extent to which this happens, we looked at how
our taxonomy would change by only inspecting PRs extracted from GitHub projects having
specific characteristics. We looked at projects having a different (i) number of contributors,
(ii) history length measured in number of days between the first and the last commit
documented on GitHub, and (iii) size, measured in Lines of Code (LOC), including code
and comments.

Starting from the 207 projects that contributed at least one PR to our taxonomy, we
split them into three groups, having a low, medium, and high number of contributors. The

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

thresholds to split the systems in the three groups have been obtained by analyzing the 33%
and the 66% percentiles. Systems in the “low” group have less than 71 contributors (33%
percentile), those in the medium have between 72 and 307 (66% percentile) contributors,
and those in the high have more than 307 contributors.

Similarly, projects have been split into those having a (i) short (less than 2,009 days),
medium (between 2,010 and 2,841 days), and long (more than 2,841 days) history; and (ii)
small (less than 89,906 LOC), medium (between 89,907 and 246,303 LOC), and large (more
than 246,303 LOC) size. It is important to understand that the categories we defined are
relative to our sample of 207 projects that as we explained includes only projects having
at least 10 contributors, 500 commits, and 50 PRs. Thus, our definition of small system,
should not be seen in terms of absolute terms but relatively to our sample.

We tested whether, for the different root categories of the taxonomy, proportions of PRs
vary across different buckets (e.g., among small/medium/large projects, or projects having
a short/medium/long history). We used proportion tests [51], a test suitable to compare
multiple (> 2 proportions). We consider a significance level of 95%, i.e., reject the null
hypothesis of the test (𝐻0: proportions do not significantly differ) when the test produces
a p-value< 0.05. Since for each variable the test is performed multiple times (one for each
root category) we adjust p-values using the Benjamini-Hochberg correction procedure [28].

3 STUDY RESULTS
Figure 2 reports the developers’ perception of the initial set of refactoring-specific rejection
categories emerged from the PRs manual analysis. Percentages indicate negative (Disagree
or Strongly disagree), neutral, and positive (Agree or Strongly agree) answers respectively.

11%
14%
14%
20%
24%
17%
16%
18%
21%
17%
26%
29%
24%
27%
28%
32%
27%
26%
36%
38%
33%

76%
69%
68%
60%
59%
58%
58%
57%
56%
54%
53%
50%
49%
46%
44%
42%
42%
40%
35%
31%
31%

13%
17%
18%
21%
16%
25%
26%
25%
23%
29%
22%
21%
27%
27%
28%
26%
31%
34%
29%
30%
36%

C8: Introduce bugs/break APIs/breaks compatibility

C9: Violate requirement, domain, design assumptions

C10: Degrade performance/memory usage

C11: Decrease readability/understandability
C12: Increase complexity

C13: Do not adhere to coding conventions

C24: Need additional testing

C25: Do not fully address the code quality issues

C1: Generated automatically are not considered valuable

C4: Lead to disagreement on overall benefits of refactoring

C2: Bring potential risks which outweigh their value

C23: Do not generalize to the whole system

C6: Are not in the community interest

C7: Conflict with planned code changes

C17: Contain choices of non−optimal design solutions

C21: Contain problematic exception handling

C22: Lead to disagreement on third−party component adoption

C19: Lead to disagreement on the exposed interfaces

C20: Lead to disagreement on variable types and accessibility

C16: Contain inappropriate use of design patterns

C15: Contain poor responsibility distribution among classes or modules

−100 −50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 2. Survey respondents’ perception on the 23 refactoring rejection reasons identified from PRs

Figure 3 reports the taxonomy of refactoring rejection reasons. Such reasons can be either
process-related (top-side) or specific to refactoring changes (bottom-side). The former are
related to issues in the PR submission process (i.e., the same code, submitted by avoiding
those process-related issues, would likely be accepted), while refactoring-specific reasons are
directly related to properties of the performed refactoring (e.g., the refactoring contribution
decreases code readability).

Categories colored in gray emerged from the PR-related study, and (for the refactoring-
specific ones) were then assessed during the survey, whereas categories in green only emerged

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:9

Reviewer ContributorConflictsChange

Require high review cost/Do
not have available reviewers

Have reviewers who are
unwilling to review and accept

major code changes

Have reviewers who
negatively perceive changes

to code they own

Do not follow PR processAre obsolete

Are implemented by other
PRs/developers

Process-Related Rejection Reasons

Introduce merge conflicts

Bring issues with branch
rebase

Conflict with another PR

Do not implement
recommended changes

Do not consider code
ownership and licensing

issues

Opt for personal preferences
over measured quality

increase

Are contributed by developers
without good reputation

Have reviewers who do not
focus on long-term benefits or

sustainability of software
quality

PR Size and Content

Are not cohesive - tangled
change

Are too large

Include unnecessary files /
non-code refactoring

Planning

Are postoponed to new
release

Are inactivie: (author/
community)

Do not have upfront contact/
discussionLead to build failure

71+2 31+0 3+110+2235+19 21+10

Additional Work
Needed

Poor Design and
Implementation

Decisions

Negative Effect on
Functional/Non-

functional Software
Properties

Risky or with Limited/
Unclear Benefits

Need additional testing

Do not fully address the
code quality issues

Need to be properly
commented/documented

Are driven by abstract
beauty but not by real

code change requirements

Generated automatically
are not considered

valuable

Bring potential risks
which outweigh their

value

Are not in the community
interest

Conflict with planned
code changes

Subjective Value or
Unclear Goals

Do not add value in the
eyes of customer

Lead to disagreement on
overall benefits of

refactoring

Are stylistic changes with
no clear benefit

Refactoring-Specific Rejection Reasons

Functional Software
Properties

Introduce bugs/break
APIs/breaks compatibility

Non-functional Software
Properties

Degrade performance/
memory usage

Negative Effects on
Maintainability

Decrease readability/
understandability

Increase complexity

Do not adhere to coding
conventions

Design Choices

Contain poor responsibility
distribution among classes

or modules

Contain inappropriate
use of design patterns

Contain choices of non-
optimal design solutions

Lead to ripple effects

Implementation Choices

Lead to disagreement on
the exposed interfaces

Lead to disagreement on
variable types and

accessibility

Contain problematic
exception handling

Lead to disagreement on
third-party components

adoption

Do not generalize to the
whole system

From Survey

From PR Analysis

Root-Level Category

LEGEND

Sub-Category

39+45 99+10 47+3 14+17

X+Y, where
X — #Mentioning From PR Analysis

Y — #Mentioning From Survey

ID

P1

P2

P21

P5

P3

P4

P11

P12

P13

P18

P20

P21

P14

P15

P16

P17

P6

P7

P8

P9

P10

C1

C2

C3

C4

C5

C6

C7

C8

Violate requirement,
domain, design

assumptions
C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

ID

x+y

Fig. 3. Process-related and refactoring-specific rejection reasons

from the survey. The two numbers x and y in “x + y” attached to each root-level category
𝑅 indicate the number of PRs that were rejected due to one of the reasons from PR analysis
(x) and the number of surveyed developers that indicated one of the reasons in 𝑅 as relevant
for refactoring rejections they experienced (y).

In the following, we discuss our taxonomy, reporting interesting examples and outlining
implications for researchers (indicated with the icon) and practitioners (⋔ icon).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

3.1 Process-Related Reasons
Process-related reasons for the rejection of refactoring contributions are depicted on the
top of Figure 3. Since such reasons are not the main focus of our study, and since factors
influencing PR acceptance have already been studied [31][34][38][61][68], we only briefly
comment on them.

We identified five root-level categories in our manual analysis: (i) Change introduced
in the PR, e.g., due to refactoring operations performed on obsolete code; (ii) Conflicts,
meaning cases in which the PR generated a code conflict (e.g., a merge conflict); (iii) issues
related to the PR Size and Content, in particular cases in which the PR is not cohesive and
contains too many changes, do not have a clear focus; (iv) rejection reasons related to the
PR Planning, such as postponing the refactored code to subsequent releases; and (v) reasons
due to Contributor behavior (e.g., does not implement changes required by the reviewers)
or role (lack of reputation in the project).

We created a sixth category as a consequence of the survey we performed. Indeed, the
surveyed developers also pointed to rejection reasons that are due to the Reviewer ’s behavior
during the code review process. This could not have been easily discovered by only looking
at PR discussions, and points to possible subjectiveness in assessing the reason for why
a PR is rejected. For example, consider the subcategory Have reviewers who negatively
perceive changes to code they own. This subcategory accounts for cases where the owner of
the refactored source code does not see the need for her code to be refactored. As it can be
seen from Figure 3, besides the whole Reviewer root category, the survey also contributed
with an additional five reasons (P13, P21, P8, P9, P10) to already existing root categories.

While not being the focus of our study, there are some lessons that can be drawn from
the process-related reasons part of the taxonomy.

 When looking at related literature studying reasons impacting the PR accep-
tance, we see that process-related factors confirm findings reported in the study
of Tsay et al. [68] and in the analysis of personality traits by Iyer et al. [38]. For
instance, the lack of reputation for the contributor (e.g., the contributor is a
newcomer in the project) might decrease the chances of PR acceptance, as well
as missing upfront contact/discussion (pointed out in the survey).
⋔ Contributors and reviewers can derive from our taxonomy a set of good practices
to apply in the PR process. On the contributor side, focusing on small cohesive
PRs could help in increasing the chances of acceptance. Also, careful planning
could avoid rejections related to obsolete contributions or changes that are work
in progress in other PRs. Communicating with the core developers sooner than
later is important for contributors. Looking at the reviewer’s perspective, the
study (and in particular the survey results) highlights the need to keep an open
mind for changes to code they own and to consider the long-term benefits that
refactoring contributions can bring.

3.2 Refactoring-Specific Reasons
3.2.1 Negative Effect on Functional/Non-functional Software Properties. This category of
rejection reasons is related to the negative effects on software functional or non-functional
(e.g., performance, maintainability) properties.

Code contributions introduce bugs/break APIs/break compatibility (C8). While the main
goal of refactoring changes is to improve the structure of source code without changing its
behavior, sometimes developers unintentionally introduce bugs or API incompatibilities.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:11

According to our survey, around 75% of the respondents (C8 in Figure 2) agree that
refactoring contributions get rejected often due to this reason.

Example: In PR#2355 of the “Spoon” project [11], the contributor proposed to add
the final qualifier to utility classes as advised by Java coding style guides, including a
CheckStyle check [6]. However, while utility classes are not supposed to be instantiated or
sub-classed, in practice, some developers extend them to easily import all their methods as a
sort of API, that can be further extended in their project. Adding the final keyword would
break client projects using such a mechanism and, for this reason, the PR was rejected.

⋔ While it is natural to require refactoring contributions not to introduce bugs or
alter APIs, this example indicates that contributors should also take precautions
to avoid potential incompatibilities with client code, even when such code is not
explicitly marked as an API.
 On the researchers’ side, refactoring recommender systems should become
aware of the cost of the recommended refactorings in terms of code changes. This
point has also been raised by Hall et al. [36] who pointed to the code disruption
caused by automated refactoring tools (i.e., the need for updating a large part
of the code base as a consequence of certain refactoring operations). Hall et al.
focused on the disruption caused by the refactored code.

Our analysis shows that even small changes (e.g., the addition of a final qualifier)
can trigger a chain of code changes in the code base of a large number of client projects.
Alerting developers when recommending such changes can improve the usability of refactoring
recommenders and reduce the chance of accepting breaking changes.

Code contributions violate requirements, domain, or design assumptions (C9). When
developers do not fully understand the rationale behind certain implementation choices
made in a code base, they might submit refactoring contributions which are against the
original project requirements or design. More than half (58%) of the developers claim that
they often face contribution rejections due to this reason (C9 in Figure 2).

Example: In PR #3766 of the project Druid [2], the contributor extracted a new class
from the Granularity class, while the goal of the maintainers was “moving towards a single
concept of Granularity”.

⋔ This type of rejection can be avoided by providing detailed documentation
about the maintainers’ intentions together with a development roadmap.
 As reported by Aghajani et al. [20], documenting the rationale of code changes
is considered a major “documentation issue” by practitioners, and techniques
automating such a process can be of support. For example, creating techniques
able to classify a code change as in need of documenting the rationale or not
could support developers in such a task.

Code contributions bring negative effects on maintainability (C11, C12, C13). Another
potential side effect of a refactoring action is that, besides its good intentions, it can decrease
maintainability. This includes decreasing readability/understandability (C11 in Figure 2),
increasing complexity (C12), and not adhering to coding conventions (C13). More than 50%
of our respondents claim that they often face contribution rejections due to these reasons.

Example: In PR #2520 of the “Spoon” project [12], the contributor merged two if
conditions into one return statement. While the expression became shorter, the original
author of the code stated that he wrote a “longer implementation” because it was more
readable for him.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

⋔ This example sheds light on the subjectiveness of refactoring decisions. While
shortening expressions make the code more concise, there are developers that
find it more difficult to comprehend. On the contributors’ side, this suggests that
contacting core developers before implementing refactoring-related changes can
avoid wasted effort.

 On the researchers’ side, instead, such a case supports the idea of consumer-
related customization of recommender systems [22]. Specifically, in the context of
refactoring, some developers (consumers of the recommendation) could appreciate
certain refactoring recommendations because, for example, they are aligned with
their programming style, while others may not accept it. Inferring the developer’s
programming style and “preferences” is an open research challenge that, if
properly addressed, could substantially boost the usefulness of developer-related
recommender systems.

Code contributions degrade performance/memory usage (C10). An undesired side effect
of refactoring can be related to performance or memory usage degradation. This issue was
indicated as reason for the rejection of refactoring contributions by 31% of our survey
participants (C10 in Figure 2).

Example: In PR #403 of the Apache Eagle project [3], the developer proposed to replace
low-level string manipulation functions (indexOf, substring) with regular expressions to
improve the readability of the code used to parse log messages. The PR was rejected as
the reviewer explained that replacing the current code with regular expressions was not an
option, since they “achieved more than 10 times performance gain by using string operations
rather than reg-exp” and that performance was highly important as in production there were
issues with large amounts of audit logs.

⋔ While readability is appreciated, the adoption of less readable code is sometimes
acceptable due to other non-functional requirements (e.g., performance). Also in
this case, to prevent developers from submitting unnecessary and performance-
degrading refactoring contributions, the rationale for implementation choices
could be documented in code comments. Another suggestion could be providing
performance benchmarks and asking contributors to evaluate the performance
change before submitting their code.

 Looking at the problem from a researcher’s perspective, state-of-the-art refac-
toring recommenders [26, 66] ignore the heterogeneity of modern software, and
the different priorities that non-functional requirements may have in different
contexts. Future work should consider integrating into these recommender sys-
tems the possibility to define a priority list of non-functional properties that
developers are (or not) willing to sacrifice when applying a refactoring. This
would allow generating more meaningful refactoring recommendations.

3.2.2 Additional work needs to be performed. This category of rejection reasons is related to
insufficient work presented in the refactoring contribution, and extra tasks that should be
performed to get the contribution accepted.

Code contributions need additional testing (C24). This is one of the most common issues
developers encountered in this category, agreed by 76% of developers (C24 in Figure 2). The
required test can be either functional or non-functional.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:13

Example: In PR #2658 of the Micronaut project [15], the contributor was asked to
evaluate the performance change after refactoring, while in other PRs (e.g., PR #611 of the
grakn project [10]) more functional testing was required.

⋔ While the availability of tests is important for PR acceptance [69], it is
particularly important for refactoring changes, which should not change behavior.
Leveraging continuous integration infrastructures could help to achieve this
goal, not only by ensuring that refactoring does not break changes, but also by
checking that refactored code is properly tested (e.g., by measuring coverage)
and by checking there are no regression in non-functional properties such as
performance/energy [59] or security [48].

Code contributions do not fully address the code quality issues (C25). Refactoring con-
tributions can be rejected because further refactoring is needed to fully address the quality
issue they target. 42% of the survey participants agree that this is a frequent reason for
refactoring rejection (C26 in Figure 2).

Example: In PR #2393 of the Open Event Android project [8], the contributor performed
extract class refactoring on a component responsible for too many tasks. The reviewer
suggested that the extracted classes could be further refactored into even more fine-grained
classes.

 This example shows the subjectivity and iterative nature of refactoring. From
a refactoring recommender perspective, including developer feedback in the
automated generation of refactoring solutions [23, 37] can help in reaching both
these objectives by generating solutions that are (i) well-suited for the specific
developer, and (ii) further refined when needed.

Code contributions need to be properly commented/documented (C26). Some survey
responses mentioned the lack of proper comments/documentation as a reason for refactoring
rejections. This suggests that developers should invest more time in non-coding activities
during refactoring to make their contribution easier to understand. Also, automatic docu-
mentation techniques [57] may be used to propose to the developer code comments to be
injected while refactoring.

3.2.3 Risky Or with Limited/Unclear Benefits. This category of rejection reasons is related to
potential risks refactoring contributions bring or limited/unclear benefits they can provide.

Refactorings generated automatically are not considered valuable (C1). Sometimes con-
tributors use tools to automatically generate refactorings, which are not always considered
valuable. One third of the respondents (31%) claim this as possible reason for refactoring
contribution rejection (C1 in Figure 2).

Example: In PR #286 of the JITWatch project [1], the maintainer clearly stated that he
does not accept PRs generated by refactoring tools, and suggested the contributor to rather
pick an open issue to help improve the project.

 In this case the reason for the rejection is not the quality of the proposed
refactoring but rather the fact that there is no developer backing up and explaining
the value of the proposed refactoring. While automated refactoring can provide
useful support, developers should have “the last word” and properly adapt
suggested changes. Automatically explaining the rationale for a recommended
refactoring, while being an interesting research direction, may be insufficient.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

The potential risk of refactoring contributions outweighs their value (C2). One frequently
encountered issue with refactoring contributions is that their value might be outweighed by
the risks they bring, agreed on by 68% of our survey participants (C2 in Figure 2).

Example: In PR #88 of the Universal Media Server project [18], the reviewers rejected
the PR as they believe that “it’s better to have stable code that is poorly-written than
potentially make it unstable but well-written”, and are “against rewriting code if there is no
other gain than that ‘it looks better’ since any change is bound to introduce new bugs”.

⋔ The risks of refactoring operations are known in the literature, including the
introduction of bugs [24]. Even IDE-integrated refactoring engines have been
shown to introduce bugs in software under specific circumstances [62]. Regression
testing of the refactoring contributions should always be performed to ensure the
absence of behavioral changes.

Code contributions have subjective value or unclear goals (C3, C4, C5). The benefit of
some refactoring contributions can be minor or unclear, and maintainers might not bother
to merge the code. 56% of our survey responses indicated that this is often the reason for
refactoring rejection (C4 in Figure 2).

In PR #211 of the EssentialsX project [7], the contributor refactored the code to include
Java 7 features. He thought that the commit “would help to update the code to take advantage
of Java 7 and to help keep the code clean and up-to-date with the latest Java conventions”,
and mentioned that another contributor agreed with the implemented changes. However,
two reviewers commented about their perceived lack of value for the implemented changes,
closing the PR.

⋔ Such an example stresses the point about the subjectiveness of refactoring
choices. In our survey, some respondents also mentioned that refactoring contri-
butions are likely to be rejected when they are merely stylistic changes without
clear benefits or when they do not add extra value to customers.

Code contributions are not in the community interest (C6). Sometimes refactoring con-
tributions might bring changes not in line with the community. This reason is agreed on by
one third (35%) of the respondents (C6 in Figure 2).

Example: In PR #2524 of the XChange project [14] the contributor proposed to simplify
several central abstractions to pure interfaces. As reported by the reviewer, those changes
are done to “peruse a totally different way of ” implementing modules “without an overall
consensus” of the community.

⋔ While contributors might believe there are better ways of implementing code
in a given project, looking for consensus of at least, of the core developers of the
project is fundamental for all code changes and, in particular, for refactoring
contributions. Indeed, appreciating the value of refactoring is subjective.

Code contributions conflict with planned code changes (C7). Another common reason
for rejecting refactoring contributions, indicated by 60% of the survey participants (C7 in
Figure 2), are conflicts they generate with ongoing or planned code changes.

Example: PR #645 of the ExoMedia project [5] was rejected as the refactored code in this
Android app was going to be migrated to Kotlin.

⋔ It is not uncommon to see contributions conflict with project plans. To prevent
this type of effort waste, maintainers might consider adding relevant comments
for the part of code which is or will be under significant changes, and to make it
clear and publicly available the project road-map.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:15

3.2.4 Poor Design And Implementation Decisions. This category is related to the disagreement
between contributors and reviewers on design and/or implementation choices.

Design choices. The reasons for refactoring rejections reflected in our survey include “poor
responsibility distribution among classes or modules (C15)”, “inappropriate use of design
patterns (C16)”, and “choice of non-optimal design solutions (C17)”. Around half of the
survey participants agree that these are common refactoring contribution rejection reasons.

Example (“inappropriate use of design patterns”): In PR #123 of the MonkeyEngine
project [13] the contributor applied a strategy pattern and introduced some additional
abstractions to source code, and after a lengthy discussion, the reviewers decided to close
the PR as they consider the PR was too “invasive”. While abstraction can enhance the
extensibility and reusability of source code, it can also increase complexity.

Example (“poor responsibility distribution among classes or modules”): In PR #846 of the
XWiki Platform project [19], the maintainer disagreed on how the contributor organized
the structure of tests.

Example (“non-optimal design solutions”): In PR #155 in the Spring Cloud Stream
project [17], the reviewers came up with a better refactoring idea after some iterations, and
decided to implement the new idea in a fresh PR.

⋔ Literature provides controversial suggestions on the use (and abuse) of design
patterns: some studies suggest that they should always be preferred to simpler
solutions because of their flexibility [45], whereas others indicate that they can
make source code clumsy, might harm software evolution [39], and degrade
performance [72]. Contributors should think about benefits for future changes,
but, also, consider negative effects on understandability, maintainability, and
performance.

Respondents also expressed concerns that refactorings are often driven by abstract beauty
but not by real code change requirements. Refactorings have ripple effects, i.e., they often
lead to other tasks. Contributors should consider the extra value of refactoring in addition
to improving the readability.

⋔ Contributors should keep the refactoring self-contained and possibly well-
focused, such that the overall system will not be dramatically impacted.

Implementation choices (C19, C20, C21, C22, C23). The reasons for refactoring rejections
in our survey include “disagreement on the exposed interfaces (C19)”, “disagreement on
variable types and accessibility (C20)”, “problematic exception handling (C21)”, “disagree-
ment on third-party components adoption (C22)”, and “being unable to generalize to the
whole system (C23)”.

Around 40% of the survey participants have experienced refactoring rejections due to
C20-C23. 58% of developers claim “disagreement on the exposed interfaces” was often the
reason for refactoring rejection.

Example: In PR #1380 in the Pulsar project [4] the reviewer and the contributor disagreed
on which getter/setter methods should be kept/removed.

⋔ The reasons related to implementation choices stem from overly narrow views of
the system upon performing a refactoring. Access to system-wide documentation
and broad knowledge of the overall system’s design may be required even when
refactoring actions are focused.

3.3 How Projects/Contributors Characteristics Impact our Taxonomy
Table 2 reports the achieved results for size, history length, and number of contributors.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

Table 2. Number of PRs when considering projects having different sizes measured in lines of code

Root Category Ta
xo

no
m

y

Sm
al

l

M
ed

iu
m

La
rg

e

Sh
or

t

M
ed

iu
m

Lo
ng

Lo
w

M
ed

iu
m

H
ig

h

LOC History Length Contributors

Additional work needs to be performed 14 6% 4% 4% 7% 4% 2% 4% 5% 3%
Change 71 16% 22% 27% 24% 16% 2%5 23% 23% 15%
Conflicts 31 12% 9% 7% 14% 7% 7% 13% 10% 3%
Negative eff. on func./non-func. prop. 99 30% 29% 30% 4% 10% 5% 33% 28% 31%
Planning 21 5% 10% 4% 14% 14% 16% 2% 7% 12%
Poor design and implem. decisions 47 17% 11% 15% 14% 14% 16% 14% 16% 10%
PR size and content 35 16% 9% 7% 11% 7% 14% 13% 10% 10%
Risky or with limited/unclear benefits 39 12% 10% 13% 8% 16% 13% 11% 11% 15%

Unique PRs 327 109 108 110 115 109 103 94 176 57

The table shows for each root category in our taxonomy the number of PRs that contribute
to it in the entire taxonomy (column “Taxonomy”, which considers all 207 systems as a
whole). Note that we only considered root categories to make sure we have enough data for
such an analysis. Also, we excluded the “Contributor” category since it had too few PRs
contributing to it (3), and the “Reviewer” category since it emerged as output of the survey
rather than of the PR study. The last row shows the number of unique PRs in our taxonomy
contributed by systems having different characteristics (e.g., 109 PRs come from small
systems). Finally, the percentages in the table show the percentage of PRs from specific
types of systems (e.g., small systems in Table 2) that belong to a specific root category. For
example, 17 PRs coming from small systems contribute to the Change root category (16%).

Since a PR can belong to more than one root category, the number of unique PRs is not
the sum of the PRs in each category, and therefore the percentages do not add up to 100%.

There are no major differences in how the different “categories” of projects contribute
to the overall taxonomy. This is confirmed by the proportion test, which never highlighted
statistically significant differences in proportions of PRs among different categories (p-values
always greater than 0.05). Such a finding is valid for all categories and it is likely due to
the fact that, as explained, our selection criteria for the subject systems probably created a
cohesive set of projects. More interesting are the findings in Table 3, in which we analyze
how PRs opened by developers having different levels of experience within each of the 207
projects contribute to our taxonomy.

Table 3. Number of PRs in each root category when considering PRs authored by contributors with
different experience (# past commits in the system).

Root Category Taxonomy Q1 Q2 Q3 Q4

Additional work needs to be performed 14 4% 3% 0% 7 %
Change 71 20% 22% 25 % 34%
Conflicts 31 10% 8% 17% 7 %
Negative eff. on func./non-func. prop. 99 29% 33 % 50% 28%
Planning 21 8 % 6 % 0 % 0%
Poor design and implementation decisions 47 14% 22 % 8 % 7 %
PR size and content 35 10% 11 % 8 % 17 %
Risky or with limited/unclear benefits 39 13% 6% 17% 7%

Unique PRs 327 250 36 12 29

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:17

Table 3 has the same format of the previous tables. However, we split the developers into
four categories based on the quartiles. The first quartile Q1 groups developers that, within a
project, had an experience (measured as number of past commits they performed before
opening the PR we analyzed) lower than 25% of the developers of the system. These are
basically the developers with the lowest experience in a specific project. Similarly, Q2 are
the developers falling in the 25% to 50% percentile, Q3 in the 50% to 75% percentile, and
Q4 above the 75%. We decided for a more fine-grained analysis (four categories rather than
three as done for the projects’ characteristics) to achieve a stronger distinction between those
that could be considered almost newcomers (Q1) and very experienced developers (Q4).

The results in Table 3 show an interesting finding: developers in the 25% percentile are
responsible for 76% of the PRs rejected due to issues documented in our taxonomy. Among
the other three categories, there is not a strong distinction. As previously discussed, this
confirms previous findings in the literature, reporting the lack of experience of the contributor
as one of the reasons for the rejection of PRs. Also, this indicates that our taxonomy is
particularly relevant for developers moving their first steps in an open-source project.

4 THREATS TO VALIDITY
Construct validity threats concern the relationship between theory and observation. The first
part of our study focused on PRs that were mostly about refactoring. As pointed out by
Murphy-Hill et al. [50], floss refactorings (performed together/as a consequence of another
change) tend to be more frequent than pure (“root-canal”) refactorings. Nevertheless, during
the manual analysis we also checked whether the refactoring was performed together/as
a consequence of another change, and this happened for 172 out of 330 PRs, i.e., 50.7%,
which is in line with the results reported by Murphy-Hill et al. [50]. Also, validating the
initial taxonomy and collecting further refactoring rejection reasons through the survey
helps to avoid the root-canal refactoring bias. Another threat is caused by the fact that
rejection reasons originating from the survey are mostly personal opinions/perceptions. That
is, respondents could have other reasons for rejecting refactorings (even including personal
conflicts with other developers) they do not want to admit. We mitigated this threat by
highlighting these categories in the taxonomy, distinguishing from those inferred from the
PR manual analysis.

The taxonomy defined in our study mostly derives from a manual analysis of rejected
refactoring-related PRs. However, we did not look into accepted PRs to assess the extent
to which the same “reasons” we documented in our taxonomy are present there. In other
words, it is possible that, while we found many instances of PRs rejected due to reason 𝑅,
there are many other PRs in which 𝑅 was not considered a reason to reject the refactoring
contribution.

Finally, our study is based on the idea that refactoring-related PRs are rejected but we
did not study how often this happens in practice (but only why this happens). This is due
to the fact that, as shown in our manual analysis, automatically identifying refactoring-
related PRs is challenging and, on top of that, ensuring that a PR has been rejected due
to refactoring-related reasons requires a manual inspection of the PR. However, to get an
idea of the magnitude of the phenomenon, we extracted from the set of 207 GitHub projects
contributing at least one PR to our taxonomy, the number of closed PRs having “refactor” in
the title. We found 26,015 instances, of which 7,481 (29%) while closed have not been merged
(thus possibly being rejected). This supports the relevance of the phenomenon investigated
in our study.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

Internal validity threats concern factors internal to our study that could have influenced
our results, and are mainly related to possible subjectiveness and imprecision when creating
the taxonomy. To mitigate this threat, we used a multiple tagger approach in the manual
analysis of PRs and of the open answers provided by developers. Note that, being this an
open card sorting process where the categories are not clearly predetermined, we did not aim
at reaching an agreement already during the tagging phase. This is why a conflict resolution
phase was embedded in our process.

As explained in Section 2.5, we analyze the extent to which the characteristics of the
analyzed projects, as well as of their contributors, could impact on our results, i.e., on the
distribution of PRs for the different refactoring rejection reasons. However, as shown in
Section 3.3, we did not find any statistically significant difference.

It is still possible that refactoring rejection reasons are our interpretation of what is
reported in the PR discussion or mentioned in the survey answers. Moreover, to create the
taxonomy, we followed a card sorting approach [63] involving multiple authors, with iterative
refinements performed until no more changes were done by anybody.

During the tagging the web app we employed showed the list of already created tags to
avoid an excessive growth of the number of possible tags. A possible consequence is that
annotators avoided the creation of a new tag when an already existing tag was “close enough”
to the one they wanted to define (i.e., annotators maximized the reuse of existing tags).

External validity threats concern the generalizability of our findings. Our study focuses on
Java projects. Thus, our findings are specific to Java, since other languages may trigger specific
refactoring opportunities we did not consider. Furthermore, the first part of the analysis
has focused on open-source projects hosted on GitHub, where refactoring contributions are
reviewed as PRs. We mitigate this threat through the survey which also involves respondents
working in industry.

While we manually analyzed 951 PRs, our final taxonomy stems from 330 manually
identified true positives, coming from 207 repositories, leading to a small average number of
PRs per repository (1.6). This affects the representativeness of our taxonomy.

5 RELATED WORK
We first briefly discuss related work on pull request acceptance, and then focus on studies
investigating why and how developers perform refactoring, and the challenges developers
encounter during refactoring.

5.1 Studies on PR acceptance
Gousios et al. [34] conducted an exploratory study revealing how metrics measuring the size
of a PR have an impact on its acceptance, highlighting reasons for PR rejection. They found
that only 13% of PRs are rejected due to technical issues, while 53% of the rejections are due
to the distributed nature of the PR process. Our study confirms that, also for refactoring,
PR size plays a major role, although there are several other technical factors also impacting
acceptance.

Lenarduzzi et al. [46] investigated whether code quality (assessed in terms of code smells,
anti-patterns and coding style violations) matters when accepting a PR. While their results
claim that code quality does not affect PR acceptance at all, our study highlighted how PRs
were rejected due to code quality issues and to the lack of adherence to coding standards. A
possible reason for such a divergence is that Lenarduzzi et al. detected themselves smells and
violations (which may or may not be relevant for developers), whereas we found discussions
highlighting violations of projects’ coding style guidelines.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:19

Other authors looked at social aspects influencing pull request acceptance.
Tsay et al. [68] looked at both technical and social factors influencing PR acceptance.

Their findings point out how the lack of reputation of the contributor (e.g., the contributor is
a newcomer in the project) reduces the chances of PR acceptance, as well as missing upfront
contact/discussion. Chen et al. [31] showed how support (or on the contrary disapproval) and
the availability of alternate solutions contribute to drive PR acceptance. Soares et al. [61]
found that technical (e.g., programming language, number of commits) and social factors
(e.g., whether the submitter is a newcomer or external contributor) have an impact on PR
acceptance. Iyer et al. [38] found that diversity in personality adds value to open-source
projects. Their results point out that the likelihood of PR acceptance is influenced by
personality traits of developers, both submitters and closers. For instance, submitters having
high openness, conscientiousness and low extroversion have more chances for PR acceptance.

Differently from the above studies, we analyze refactoring-specific factors with the aim of
identifying the main reasons for not accepting PRs implementing a refactoring change.

5.2 Studies on refactoring activities, risks and challenges
Refactoring has been studied in the literature from many different perspectives. These
include the probability of introducing bugs while refactoring [24], merge conflicts caused
by refactorings [47], how developers’ productivity is impacted by refactoring [49], and how
quality indicators change as consequence of refactoring actions [21][30][64][65].

In a field study with 328 Microsoft engineers, Kim et al. [40] investigated when and how
developers refactor code. They identified refactoring risks, which can be mapped to reasons
for rejection. These include, in order of importance, regression bugs/build breaks, testing
cost, time taken from other tasks, merge conflicts, difficulty to code review and churns. Most
risks map to our process-related reasons, breaking behavior, and need for better testing.
Our work goes further, identifying 26 refactoring-specific reasons, and expanding on the
process-related reasons (21 in total).

Murphy-Hill et al. [50] investigated how developers perform refactorings. The authors
analyzed refactoring operations in eight datasets. One of the studied datasets contains
usage data from 41 developers using the Eclipse IDE capturing an average of 66 hours of
development time per developer.

Interesting findings are that (i) programmers rarely configure refactoring tools; (ii) commit
messages do not help in predicting refactoring, since developers do not explicitly report
their refactoring activities in them; (iii) developers often interleave refactoring with other
programming activities; and (iv) most refactoring operations (∼90%) are performed without
the help of any tools. As Murphy-Hill et al. [50] observed, refactoring operations occur
frequently together with/in consequence of other changes (“floss refactoring”), as opposed
to pure (“root-canal”) refactoring. In our study we carefully determined, while reviewing
PRs, whether a rejection was due to refactoring or to other reasons.

Wang et al. [71] studied the factors motivating refactoring operations. The authors built
an empirical model featuring 12 intrinsic (when refactoring is initiated without any obvious
external reward, e.g., Self Esteem) and external motivators (e.g., Recognitions from Others).
Related to our work, it is possible that some intrinsic factors could let developers initiate
refactoring actions which end up not having a clear value or having other weaknesses which
determine their rejection.

Silva et al. [60] focused on refactoring operations mined by using RMiner [67]. The authors
contacted contributors of the mined refactorings asking for the motivations behind the
performed changes. They defined a catalog of 44 motivations for 12 types of refactoring

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

operations. Our work is not specific to refactoring types, but aims at identifying points to
ponder before proposing a refactoring action, whatever type it is.

Paixao et al. [53] investigated developers’ intents when performing refactoring actions and
their sequential evolution during code review. A similar study was presented by Pantiuchina
et al. [54], in which the authors qualitatively analyzed refactorings in merged PRs with the
goal of complementing refactoring motivations already known in the literature [40, 60, 71].
Moreover, the authors performed a quantitative analysis to study which process- and
product-related factors correlate with refactoring actions.

Peruma et al. [55] studied factors motivating developers to perform refactoring actions,
focusing on rename refactorings. Their findings show that in most cases rename refactoring
is applied to narrow the identifier meaning. This finding was confirmed by Pantiuchina et
al. [54]. We focus on reasons for refactoring rejection rather than on refactoring rationale.
At the same time, we found that the lack of a clear goal and not properly-documented
refactoring are causes for rejection.

Bavota et al. [25] studied the relationship between code smells, metrics, and refactoring
by detecting refactorings between two subsequent releases. Their findings revealed that
there is no causation between code having a smell or increased complexity and subsequent
refactoring of the code. Vassallo et al. [70] quantitatively investigated factors correlating
with refactorings. They considered factors related to why, when, and by whom refactoring
was performed.

As in our work, the importance of code review in the context of refactoring was highlighted
by Ge et al. [33]. They proposed ReviewFactor, a tool to highlight refactoring-related changes
during code review. Our work further highlights the importance of tools like ReviewFactor,
and suggests that further support is required to help developers on deciding when performing
(or not) a refactoring, and how to review it.

6 CONCLUSION
When Fowler published his seminal book on Refactoring, he promoted the idea that one
does not just first design and then code, but rather that source code is malleable, and being
constantly refactored to reflect an ever-changing environment, to better adhere to sound
design principles and improve its quality [32].

We investigated the reasons –as they can be inferred from pull requests (PRs) or as they
are reported by developers– for rejecting refactoring contributions. We manually analyzed
951 pull requests (PRs) from 395 Java projects and complemented our findings through a
large survey with 267 developers. As a result, we defined a taxonomy of refactoring rejection
reasons, divided into process-related and refactoring-specific reasons.

Besides the reasons related to behavior-breaking changes, we found that refactoring contri-
butions can be rejected due to the lack of clear benefits, or for risks that outweigh the value
of the proposed change. Also, the lack of proper knowledge of a project’s requirement/design
assumptions, of its current development planning, or its coding styles can contribute to a
negative outcome of proposed refactorings. Important factors, as survey respondents pointed
out, are the lack of a preliminary discussion of refactoring intentions and the limited (or
absent) description of the proposed changes and their goals/rationale.

The collected evidence can help to define guidelines for developers. Also, it can serve as
the basis for approaches and tools able to help developers to craft sound and acceptable
refactoring contributions (e.g., by applying the correct coding style and by generating
appropriate change descriptions), provide a quantitative assessment of their risk/benefits,
and predict whether they are likely to be accepted.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:21

Contributors

Refactoring recommender systems should become aware of the cost of the recommended refactorings in terms of code changes required to
implement them (i.e., the code disruption caused by the recommended refactorings must be minimized).

Techniques to support the documentation of the rationale for code changes are needed. A first step could be to classify a code change as in need
of documenting the rationale or not.

Consumer-related customization of recommender systems: in the context of refactoring, some developers could appreciate certain refactoring
recommendations because, for example, they are aligned with their programming style, while others may not accept it. Inferring the developer's
programming style and “preferences” is an open research challenge that, if properly addressed, could boost the usefulness of developer
recommender systems.

State-of-the-art refactoring recommenders ignore the heterogeneity of modern software, and the different priorities that non-functional
requirements may have in different contexts. Future work should consider integrating into these recommender systems the possibility to define a
priority list of non-functional properties that developers are (or not) willing to sacrifice when applying a refactoring.

Including developer feedback in the automated generation of refactoring solutions can help in generating solutions that are (i) well-suited for the
specific developer, and (ii) further refined when needed.

While automated refactoring can provide useful support, developers should have the last word and being able to properly adapt suggested
changes.

Focusing on small cohesive PRs could help in increasing the chances of acceptance: Keep the refactoring self-contained and possibly well-
focused

Careful planning could avoid rejections related to obsolete contributions or changes that are work in progress in other PRs.

Contacting core developers before implementing refactoring-related changes can avoid wasted effort.

While refactoring, contributors should also take precautions to avoid potential incompatibilities with client code, even when such code is not
explicitly marked as an API.

The availability of tests is particularly important for refactoring changes, which should not change behavior. Regression testing of refactoring
contributions is a must.

Refactoring contributions are likely to be rejected when they are merely stylistic changes without clear benefits. Also, consider possible negative
effects on understandability, maintainability, and performance.

Reviewers should keep an open mind for changes to code they own and to consider the long-term benefits that refactoring contributions can
bring.

Provide detailed documentation about the maintainers' intentions together with a development roadmap. Clearly indicate which parts of the
system will be subject to major changes in the near future and, as such, are not good candidate for refactoring in a given moment.

To prevent developers from submitting unnecessary refactoring contributions (e.g., performance-degrading ones), the rationale for
implementation choices should be documented in code comments.

Leveraging continuous integration infrastructures could help ensuring that refactoring does not break changes, but also to check that refactored
code is properly tested.

Access to system-wide documentation and broad knowledge of the overall system's design may be required to properly support developers in
refactoring.

Researchers

Reviewers and Maintainers

Fig. 4. Summary of lessons learned from our study

Figure 4 summarizes the main take-away messages derived from our study. In the top
part we report practical implications for researchers, that could help in designing better
refactoring recommender systems. While most of these implications are linked to refactoring
recommenders, several of them can be seen as more general for developers’ recommender
systems. The middle part concerns implications for developers authoring refactoring con-
tributions. The final goal of these guidelines is to increase the chance of acceptance and
contributing refactorings that are appreciated by reviewers and maintainers of open-source
projects. Finally, the bottom concerns (i) reviewers of refactoring-related PRs, and (ii)
maintainers of open source projects. Following the provided guidelines could help in better
guiding developers in contributing refactoring changes and avoiding wasted refactoring effort.

Our future work lies in leveraging the taxonomy we distilled to design and develop new
refactoring recommender systems, following the points highlighted in Figure 4.

7 DATA AVAILABILITY
The complete study material and data are available in our replication package [16].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

ACKNOWLEDGMENTS
We are grateful for the financial support by the Swiss National Science foundation through
SNF Project JITRA (172479) and SENSOR (183587).

REFERENCES
[1] AdoptOpenJDK/jitwatch/ Pull Request #286. https://github.com/AdoptOpenJDK/jitwatch/pull/286

(Last access: 08/10/2020).
[2] apache/druid Pull Request #3766. https://github.com/apache/druid/pull/3766 (Last access:

08/10/2020).
[3] apache/eagle/ Pull Request #403. https://github.com/apache/eagle/pull/403 (Last access:

08/10/2020).
[4] apache/pulsar/ Pull Request #1380. https://github.com/apache/pulsar/pull/1380 (Last access:

08/10/2020).
[5] brianwernick/ExoMedia/ Pull Request #645. https://github.com/brianwernick/ExoMedia/pull/645

(Last access: 08/10/2020).
[6] CheckStyle. http://checkstyle.sourceforge.net/ (Last access: 08/10/2020).
[7] EssentialsX/Essentials/ Pull Request #211. https://github.com/EssentialsX/Essentials/pull/211 (Last

access: 08/10/2020).
[8] fossasia/open-event-droidgen/ Pull Request #7. https://github.com/fossasia/open-event-droidgen/pull/

2393 (Last access: 08/10/2020).
[9] Gerrit. https://www.gerritcodereview.com.

[10] graknlabs/grakn Pull Request #611. https://github.com/graknlabs/grakn/pull/611 (Last access:
08/10/2020).

[11] INRIA/spoon/ Pull Request #2355. https://github.com/INRIA/spoon/pull/2355 (Last access:
08/10/2020).

[12] INRIA/spoon/ Pull Request #2520. https://github.com/INRIA/spoon/pull/2520 (Last access:
08/10/2020).

[13] knowm/XChange/ Pull Request #123. https://github.com/jMonkeyEngine/jmonkeyengine/pull/123
(Last access: 08/10/2020).

[14] knowm/XChange/ Pull Request #2524. https://github.com/knowm/XChange/pull/2524 (Last access:
08/10/2020).

[15] micronaut-projects/micronaut-core/ Pull Request #2658. https://github.com/micronaut-projects/
micronaut-core/pull/2658 (Last access: 08/10/2020).

[16] Replication Package https://github.com/replicatio/package.
[17] spring-cloud/spring-cloud-stream/ Pull Request #155. https://github.com/spring-cloud/spring-cloud-

stream/pull/155 (Last access: 08/10/2020).
[18] /UniversalMediaServer/UniversalMediaServer/ Pull Request #88. https://github.com/

UniversalMediaServer/UniversalMediaServer/pull/88 (Last access: 08/10/2020).
[19] xwiki/xwiki-platform/ Pull Request #846. https://github.com/xwiki/xwiki-platform/pull/846 (Last

access: 08/10/2020).
[20] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele Lanza,

and David Shepherd. Software Documentation: The Practitioners’ Perspective. In Proceedings of the
42nd International Conference on Software Engineering, ICSE 2020.

[21] Mohammad Alshayeb. Empirical investigation of refactoring effect on software quality. Information
and Software Technology 51, 9 (2009), 1319 – 1326.

[22] Gabriele Bavota. Mining Unstructured Data in Software Repositories: Current and Future Trends.
In Leaders of Tomorrow Symposium: Future of Software Engineering, FOSE@SANER 2016, Osaka,
Japan, March 14, 2016. 1–12.

[23] Gabriele Bavota, Filomena Carnevale, Andrea De Lucia, Massimiliano Di Penta, and Rocco Oliveto.
Putting the Developer in-the-Loop: An Interactive GA for Software Re-modularization. In Search Based
Software Engineering - 4th International Symposium, SSBSE 2012, Riva del Garda, Italy, September
28-30, 2012. Proceedings. 75–89.

[24] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Orazio Strollo. When Does a Refactoring Induce Bugs? An Empirical Study. In 12th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2012, Riva del Garda, Italy,
September 23-24, 2012. 104–113.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/AdoptOpenJDK/jitwatch/pull/286
https://github.com/apache/druid/pull/3766
https://github.com/apache/eagle/pull/403
https://github.com/apache/pulsar/pull/1380
https://github.com/brianwernick/ExoMedia/pull/645
http://checkstyle.sourceforge.net/
https://github.com/EssentialsX/Essentials/pull/211
https://github.com/fossasia/open-event-droidgen/pull/2393
https://github.com/fossasia/open-event-droidgen/pull/2393
https://www.gerritcodereview.com
https://github.com/graknlabs/grakn/pull/611
https://github.com/INRIA/spoon/pull/2355
https://github.com/INRIA/spoon/pull/2520
https://github.com/jMonkeyEngine/jmonkeyengine/pull/123
https://github.com/knowm/XChange/pull/2524
https://github.com/micronaut-projects/micronaut-core/pull/2658
https://github.com/micronaut-projects/micronaut-core/pull/2658
https://github.com/replicatio/package
https://github.com/spring-cloud/spring-cloud-stream/pull/155
https://github.com/spring-cloud/spring-cloud-stream/pull/155
https://github.com/UniversalMediaServer/UniversalMediaServer/pull/88
https://github.com/UniversalMediaServer/UniversalMediaServer/pull/88
https://github.com/xwiki/xwiki-platform/pull/846

Why Do Developers Reject Refactorings in Open-Source Projects? 1:23

[25] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Fabio Palomba. An
experimental investigation on the innate relationship between quality and refactoring. Journal of
Systems and Software 107 (2015), 1 – 14.

[26] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Automating extract class
refactoring: an improved method and its evaluation. Empirical Software Engineering (2013), 1–48.

[27] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Recommending Refactoring
Operations in Large Software Systems. In Recommendation Systems in Software Engineering. Springer
Berlin Heidelberg, 387–419.

[28] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 1
(1995), 289–300.

[29] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understanding Repository Starring
Practices in a Social Coding Platform. J. Syst. Softw. 146 (2018), 112–129.

[30] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and Alessandro Garcia. How
Does Refactoring Affect Internal Quality Attributes?: A Multi-project Study. In Proceedings of the 31st
Brazilian Symposium on Software Engineering (SBES’17). 74–83.

[31] Di Chen, Kathryn T. Stolee, and Tim Menzies. Replication can improve prior results: a GitHub
study of pull request acceptance. In Proceedings of the 27th International Conference on Program
Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. 179–190.

[32] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley.

[33] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson R. Murphy-Hill. Refactoring-aware code review. In
2017 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2017, Raleigh,
NC, USA, October 11-14, 2017. 71–79.

[34] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of the pull-based
software development model. In 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014. 345–355.

[35] Robert M. Groves, Floyd J. Jr. Fowler, Mick P. Couyper, James M. Lepkowski, Eleanor Singer, and
Roger Tourangeau. Survey Methodology, 2nd edition. Wiley.

[36] M. Hall, M. A. Khojaye, N. Walkinshaw, and P. McMinn. Establishing the Source Code Disruption
Caused by Automated Remodularisation Tools. In 2014 IEEE International Conference on Software
Maintenance and Evolution. 466–470.

[37] Mathew Hall, Neil Walkinshaw, and Phil McMinn. Supervised software modularisation. In 28th IEEE
International Conference on Software Maintenance, ICSM. 472–481.

[38] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey. Effects of Personality Traits on Pull Request
Acceptance. IEEE Transactions on Software Engineering (2019), 1–1.

[39] Foutse Khomh and Yann-Gaël Guéhéneuc. Do Design Patterns Impact Software Quality Positively?. In
12th European Conference on Software Maintenance and Reengineering, CSMR 2008, April 1-4, 2008,
Athens, Greece. 274–278.

[40] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A Field Study of Refactoring
Challenges and Benefits. In Proceedings of the 20th International Symposium on Foundations of
Software Engineering.

[41] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of survey research part 2: designing a
survey. ACM SIGSOFT Software Engineering Notes 27, 1 (2002), 18–20.

[42] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of survey research: part 3: constructing
a survey instrument. ACM SIGSOFT Software Engineering Notes 27, 2 (2002), 20–24.

[43] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of survey research part 4: questionnaire
evaluation. ACM SIGSOFT Software Engineering Notes 27, 3 (2002), 20–23.

[44] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of survey research: part 5: populations
and samples. ACM SIGSOFT Software Engineering Notes 27, 5 (2002), 17–20.

[45] Jonathan L. Krein, Lutz Prechelt, Natalia Juristo, Aziz Nanthaamornphong, Jeffrey C. Carver, Sira
Vegas, Charles D. Knutson, Kevin D. Seppi, and Dennis L. Eggett. A Multi-Site Joint Replication of a
Design Patterns Experiment Using Moderator Variables to Generalize across Contexts. IEEE Trans.
Software Eng. 42, 4 (2016), 302–321.

[46] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi. Does Code Quality Affect Pull
Request Acceptance? An empirical study. arXiv preprint arXiv:1908.09321 (2019).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, and G. Bavota

[47] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. Are Refactorings to Blame? An Empirical
Study of Refactorings in Merge Conflicts. In 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2019. 151–162.

[48] Katsuhisa Maruyama and Kensuke Tokoda. Security-Aware Refactoring Alerting its Impact on Code
Vulnerabilities. In 15th Asia-Pacific Software Engineering Conference (APSEC 2008), 3-5 December
2008, Beijing, China. 445–452.

[49] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi. Balancing
Agility and Formalism in Software Engineering. Chapter A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team, 252–266.

[50] Emerson Murphy-Hill, Chris Parnin, and Andreaw P. Black. How We Refactor, and How We Know It.
Transactions on Software Engineering 38, 1 (2011), 5–18.

[51] Robert G. Newcombe. Two-sided confidence intervals for the single proportion: comparison of seven
methods. Statistics in Medicine 17, 8 (1998), 857–872.

[52] Bram Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement. Pinter Publishers.
[53] Matheus Paixao, Anderson Uchoa, Ana Carla Bibiano, Daniel Oliveira, Alessandro Garcia, Jens Krinke,

and Emilio Arvonio. Behind the In-tents: An In-depth Empirical Study on Software Refactoring
in Modern Code Review. In Proceedings of the 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea. ACM, 11.

[54] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi, Rocco Oliveto,
Gabriele Bavota, and Massimiliano Di Penta. Why Developers Refactor Source Code: A Mining-based
Study. ACM Transactions on Software Engineering and Methodology (2020).

[55] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D. Newman. An
Empirical Investigation of How and Why Developers Rename Identifiers. In Proceedings of the 2Nd
International Workshop on Refactoring (IWoR 2018). 26–33.

[56] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Principles of survey research: part 1: turning
lemons into lemonade. ACM SIGSOFT Software Engineering Notes 26, 6 (2001), 16–18.

[57] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil A. Ernst,
Marco Aurélio Gerosa, Michael W. Godfrey, Michele Lanza, Mario Linares Vásquez, Gail C. Murphy,
Laura Moreno, David C. Shepherd, and Edmund Wong. On-demand Developer Documentation. In
2017 IEEE International Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai,
China, September 17-22, 2017. IEEE Computer Society, 479–483.

[58] B. Rosner. Fundamentals of Biostatistics (7th edition ed.). Brooks/Cole, Boston, MA.
[59] Cagri Sahin, Lori L. Pollock, and James Clause. How do code refactorings affect energy usage?. In 2014

ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM
’14, Torino, Italy, September 18-19, 2014. 36:1–36:10.

[60] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confessions of GitHub
contributors. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016. 858–870.

[61] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and Alexandre Plastino.
Acceptance factors of pull requests in open-source projects. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015. 1541–1546.

[62] G. Soares, R. Gheyi, and T. Massoni. Automated Behavioral Testing of Refactoring Engines. IEEE
Transactions on Software Engineering 39, 2 (2013), 147–162.

[63] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media.
[64] Konstantinos Stroggylos and Diomidis Spinellis. Refactoring–Does It Improve Software Quality?. In

Proceedings of the 5th International Workshop on Software Quality (WoSQ ’07). IEEE Computer
Society, Washington, DC, USA, 10–.

[65] Gábor Szoke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. Bulk Fixing Coding
Issues and Its Effects on Software Quality: Is It Worth Refactoring?. In Source Code Analysis and
Manipulation (SCAM), 2014 IEEE 14th International Working Conference on. IEEE, 95–104.

[66] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of Move Method Refactoring Opportu-
nities. IEEE Transactions on Software Engineering 35, 3 (2009), 347–367.

[67] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. Accurate
and Efficient Refactoring Detection in Commit History. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). 483–494.

[68] Jason Tsay, Laura Dabbish, and James D. Herbsleb. Influence of social and technical factors for
evaluating contribution in GitHub. In 36th International Conference on Software Engineering, ICSE

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Why Do Developers Reject Refactorings in Open-Source Projects? 1:25

’14, Hyderabad, India - May 31 - June 07, 2014. 356–366.
[69] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar T. Devanbu, and Vladimir Filkov. Quality and

productivity outcomes relating to continuous integration in GitHub. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015. 805–816.

[70] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald Gall, and Alberto Bacchelli. A large-scale
empirical exploration on refactoring activities in open source software projects. Science of Computer
Programming 180, 1 (2019), 1–15.

[71] Yi Wang. What motivate software engineers to refactor source code? evidences from professional
developers. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. 413 –416.

[72] Peter Wendorff. Assessment of Design Patterns during Software Reengineering: Lessons Learned from a
Large Commercial Project. In Fifth Conference on Software Maintenance and Reengineering, CSMR
2001, Lisbon, Portugal, March 14-16, 2001. 77–84.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Mining-Based Study
	2.2 Survey with Developers
	2.3 Taxonomy Refinement
	2.4 Presentation and Discussion of the Taxonomy
	2.5 Impact of Projects/Contributors Characteristics on the Taxonomy

	3 Study Results
	3.1 Process-Related Reasons
	3.2 Refactoring-Specific Reasons
	3.3 How Projects/Contributors Characteristics Impact our Taxonomy

	4 Threats To Validity
	5 Related Work
	5.1 Studies on PR acceptance
	5.2 Studies on refactoring activities, risks and challenges

	6 Conclusion
	7 Data Availability
	References

