
1

Video Game Bad Smells:
What they are and how Developers Perceive Them

VITTORIA NARDONE, University of Sannio

BIRUK ASMARE MUSE, Polytechnique Montréal

MOUNA ABIDI, Polytechnique Montréal

FOUTSE KHOMH, Polytechnique Montréal

MASSIMILIANO DI PENTA, University of Sannio

Video games represent a substantial and increasing share of the software market. However, their development

is particularly challenging as it requires multi-faceted knowledge, which is not consolidated in computer

science education yet. This paper aims at defining a catalog of bad smells related to video game development.

To achieve this goal, we mined discussions on general-purpose and video game-specific forums. After querying

such a forum, we adopted an open coding strategy on a statistically significant sample of 572 discussions,

stratified over different forums. As a result, we obtained a catalog of 28 bad smells, organized into 5 categories,

covering problems related to game design and logic, physics, animation, rendering, or multiplayer. Then, we

assessed the perceived relevance of such bad smells by surveying 76 game development professionals. The

survey respondents agreed with the identified bad smells, but also provided us with further insights about

the discussed smells. Upon reporting results, we discuss bad smell examples, their consequences, as well as

possible mitigation/fixing strategies and trade-offs to be pursued by developers. The catalog can be used not

only as a guideline for developers and educators but also can pave the way towards better automated tool

support for video game developers.

CCS Concepts: • Software and its engineering→ Software design engineering; Software evolution.

Additional Key Words and Phrases: Video games, Bad Smells, Q&A Forums, Empirical Study

ACM Reference Format:

Vittoria Nardone, Biruk Asmare Muse, Mouna Abidi, Foutse Khomh, and Massimiliano Di Penta. 2021. Video

Game Bad Smells: What they are and how Developers Perceive Them. ACM Trans. Softw. Eng. Methodol. 1, 1,
Article 1 (January 2021), 36 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The video game industry is rapidly expanding, and it represents a significant share of the software

development market [18]. It has been estimated that it will reach ≃ 257 billion dollars by 2025 with

over 2.5 billion people playing games
1
. Developing video games requires very specific skills and

knowledge, often going beyond the common knowledge of a developer working on conventional

software. In particular, video game development is multi-disciplinary, and this requires to involve

1
https://techjury.net/blog/gaming-industry-worth

Authors’ addresses: Vittoria Nardone, vittoria.nardone@unisannio.it, University of Sannio, Benevento, Italy; Biruk Asmare

Muse, biruk-asmare.muse@polymtl.ca, Polytechnique Montréal, Montréal, QC, Canada; Mouna Abidi, mouna.abidi@

polymtl.ca, Polytechnique Montréal, Montréal, QC, Canada; Foutse Khomh, foutse.khomh@polymtl.ca, Polytechnique

Montréal, Montréal, QC, Canada; Massimiliano Di Penta, dipenta@unisannio.it, University of Sannio, Benevento, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/1-ART1 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/1122445.1122456
https://techjury.net/blog/gaming-industry-worth
https://doi.org/10.1145/1122445.1122456


1:2 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

different types of competencies, related to artists, modelers, musicians, domain experts (as in the

case of realistic simulator games), and programmers themselves. In terms of software development,

the required skills vary from software architecture and design to computer graphics and artificial

intelligence. On top of this, despite the increasing market share of this field, and the proliferation

of specific curricula and courses on the topic, game development practices do not represent a

“mainstream” in computer science education yet.

When developing a video game, programmers have to cope with different aspects including

capturing players’ inputs, reproducing/simulating the environment’s physics, animating objects,

rendering special effects, and even synchronizing different peers in an online, multiplayer game.

All these elements, along with their combinations, require developers to make complex design

and implementation decisions, that may have a positive or negative effect on different properties

of the produced software. These include maintainability (e.g., a game may become difficult to be

extended with downloadable contents - DLC), security (online games could be hacked), and, above

all, performance and game experience.

While previous literature on video game design [10, 45] and the application of design principles

to video games [4–6, 16, 31, 48] exist, and while there have been attempts to identify video game

development patterns [45] and some anti-patterns with related detection tools [9], there does not

exist a consolidated body of good and bad practices, available for instance for object-oriented

development [17]. Moreover, as pointed out by Khanve et al. [28], conventional code smells fail to

capture all quality problems of video game source code.

To bridge such a gap, this paper empirically analyzes the bad video game development practices

that are discussed by developers on forums, to systematically derive a catalog of bad smells to be

avoided.

First, we identified data sources. Differently from other development practices, generalist Ques-

tion & Answer (Q&A) forums such as Stack Overflow may only represent a niche of discussions.

Therefore, we included in our set of sources a wide range of 13 forums (plus a direct search on the

Google Search engine), including several video game development-specific ones, e.g., the Unity
forum, the Unreal forum, or other Q&A forums for game developers like Game Development Stack

Exchange. Then, we defined a set of queries to retrieve candidate posts, executed them against

forums and search engines, and performed a pruning and preprocessing of the results. We then

extracted a randomly-stratified sample of 572 posts, using the forums as strata. Based on such a

sample, we manually analyzed the posts using a card sorting [51] procedure, with the aim of (i)

identifying video game-specific bad smells, and (ii) grouping them into meaningful categories. To

validate the obtained bad smells, we have surveyed 76 video game professional developers, which

provided us with (i) their agreement about the considered smells as well as additional comments

about them, and (ii) pointed out possible smells that were not identified in our analysis of forum

posts.

As a result, we obtained a taxonomy of 28 bad smells, grouped into 5 first-level categories, related

to game design and logic, multiplayer, animation, physics, and rendering. For each bad smell, we

provide a description, examples, possible consequences, ways to fix the problem, and possible

trade-offs that can occur (e.g., a fix may achieve better performance while degrading the game

look-and-feel).

Other than serving as guidelines for developers, the collected bad smells can be used to develop

better tool support for developers. While previous work has shown how it is feasible to develop

video game-specific linters, the availability of the bad smell catalog presented in this paper would

allow broadening the range of problems identified by such linters. Educators can also leverage this

catalog to teach aspiring game developers about bad practices to avoid.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:3

The work replication package is available online [43]. It comprises (i) the list of downloaded

posts and the sampled ones, (ii) sheets from the various steps of the open coding, (iii) the survey

questions, (iv) the survey results, and (v) the devised catalog of bad smells following a template

that makes it usable by practitioners.

The paper is organized as follows. Section 2 describes the methodology followed to mine forums

and devise the catalog of bad smells. The obtained catalog is presented and discussed in Section 3,

while its implications are highlighted in Section 4. Section 5 discusses the threats to the study’s

validity. Then, Section 6 discusses the related literature, while Section 7 concludes the paper.

2 STUDY DEFINITION AND DATA EXTRACTION METHODOLOGY
The goal of this study is to identify bad smells in video game development and assess the perceived

relevance of such bad smells. The perspective is that of researchers interested to create a catalog of

video game bad smells and, for future works, to develop monitoring tools aimed at automatically

identifying these bad smells, whenever this is possible. The context of the study is 572 discussions

gathered from 13 Q&A forums, directly or indirectly related to video game development.

We address the following two research questions (RQs):

RQ1: What kind of video game development bad smells do developers discuss on Q&A
forums? We are interested in studying if video game developers discuss video game

development bad smells in discussion forums. We also want to investigate what kind of

bad smells are debated because considered controversial. This research question aims

to create a catalog of video game development bad smells.

RQ2: How are those bad smells perceived by professionals? We want to investigate if the

identified bad smells are relevant for professional video game developers. This research

question aims to assess the perceived relevance of the bad smells identified in RQ1, and

to perform an external validation of the defined catalog.

Fig. 1 depicts the study methodology. First, we identified forums where we should mine discus-

sions related to game development bad smells. Also, we defined queries to search for candidate

relevant discussions in such forums. Then, we retrieved candidate discussions. Since some forums

have limited querying capabilities, we further refined them through local preprocessing, i.e., we
filtered discussion text considering only those that actually contained both selected keywords.

After, we performed multiple rounds of open coding until we reached saturation. In each round, we

(1) first sampled discussions, (2) then, four evaluators independently performed open coding, and

then jointly discussed them by also resolving conflicts, and (3) refined the elicited smell catalog.

After having devised a catalog of video game smells, we assessed their relevance through a survey

with video game development professionals, also asking them to provide comments and suggest

further smells that we may have missed.

Forum mining

Forum selection

Query formulation

Open coding

Annotator 1

Annotator 2

Discussion and

Conflict resolution 

Smell catalog 
refinement Sampling

“smell”, “antipattern”, 
“performance”….

Downloading

& Filtering

Validation

Survey

Catalog Creation Catalog Validation

saturation

reached?

28 smells

5 categories

no

yes

Fig. 1. Study methodology.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

2.1 Study Context
For the context selection, we followed two subsequent steps. In the first step, we identified a set

of queries aimed at retrieving candidate posts from developers’ discussion forums, similarly to

previous works that analyzed discussion forums for other purposes [24, 44, 46, 50, 52, 56, 62]. During

a preliminary virtual meeting, we discussed possible queries, also starting from the investigation

(and therefore its queries) performed by some of the authors in previous work [9]. Further, we

revised the list through an iterative process in which the authors attempt to search for smell-related

discussions through a search engine and by accessing some discussion forums. Our overall goal was

to identify keywords meaningful for our study. It means that we were interested only in keywords

that could point to discussions pertinent to our focus, i.e., bad smells in video game development.

The discussion ended up with the definition of six queries (of which the first three were considered

initially, and then complemented by the last three): (i) “smell” (note we used “smell” to include

cases such as “bad smell” or “code smell”, although we were aware that this word alone could also

produce some false positives in the context of video games), (ii) “antipattern”, (iii) “bad practice”,

(iv) “maintainability”, (v) “performance”, and (vi) “technical debt”. As it can be noticed, these queries

are generic enough to ensure a good recall, even if they may produce some false positives, that can

be, however, discarded during the manual analysis.

In the second step, we finalized the list of discussion forums to consider. Initially, we targeted

general discussion forums, e.g., Stack Overflow, and we manually submitted our queries defined in

the previous step. Since the forums’ field was related to development in general, we added to our

queries keywords like “video game” or “game”. Results gathered from general forums were few.

Since our focus was specifically related to video game development, we changed our target towards

Q&A forums related to video game development. In this case, the collected results were better than

before. For example, querying “video game bad practices” on Stack Overflow produced only 24

results, while the same query on the Unity forum produced more than 9000 results. In addition,

Stack Overflow results were mainly “how-to” questions.

To identify candidate forums, we leveraged (i) personal knowledge and (ii) lists of popular

game development forums available on the Web. More precisely, to select video game-related

Q&A forums, we searched online for the most popular game engines and, in a virtual meeting,

we discussed and selected candidate forums. The website links used for selection are available in

our replication package. In the end, we identified 13 forums, listed in Table 1. Note that, besides

the 13 forums, we also included a direct search on the Google Search engine. Also, we included

GitHub because we wanted to consider game-related Wiki pages. As the table shows, the selection

includes forums related to specific pieces of technology (e.g., Buildbox, Cocos, HTML5 Game Devs,

Tigsource, Unreal, or Unity), hardware (NVIDIA), as well as generic forums (The Game Creators,

Gamedev, Game Development Stack Exchange, or GitHub). From our initial list of candidates, we

excluded forums (e.g., those related to Indie games) that do not discuss development practices. A

complete list of the forums is available in our replication package [43].

2.2 Data Extraction
To select the sample of discussions to be analyzed, we automatically ran the queries against the

forums and downloaded the results. This was done using Selenium WebDriver for Python and

the Beautiful Soup library. The Selenium WebDriver allows for automating the interaction with

a website. Specifically, we used the Selenium APIs to submit the queries, and navigate the result

pages.

Then, we leveraged Beautiful Soup to extract text from the HTML pages. Finally, we performed

further automated filtering to check whether each candidate result page actually contained our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:5

query. This was necessary because some forums do not support the “AND” search, therefore,

for example, searching for “technical debt” would produce as a result all discussions containing

either “technical” or “debt”. As a result of the preprocessing, we collected a total of 3, 170 candidate
discussion links.

2.3 Open coding of forum discussions
Given the large number of collected forum discussions (i.e., 3, 170) and limited human resources,

we extracted a randomly-stratified sample, using the forums in Table 1 as strata. More specifically,

we considered a sample of 550 links, which ensures a ±5% margin of error with a confidence level

of 99%. To perform a stratified sampling, links have been sampled proportionally (to the size of the

stratus) from the results obtained for the different forums [22]. Precisely, the number of instance

sampled from a stratus = sample size/population size * stratus size. Note that, during the manual

analysis, we had to replace 22 links that turned out to be unavailable (likely removed in the time

frame between our download and the manual analysis). This means that in total we considered 572

links.

Table 1. List of Forums/Sources for Sampling Developers’ Discussions.

Forum Name Link

Buildbox Official Forum https://www.buildbox.com/forum/index.php

Cocos Forums https://discuss.cocos2d-x.org

Game Development Stack Exchange https://gamedev.stackexchange.com

GameDev.net https://www.gamedev.net

r/gamedev on Reddit https://www.reddit.com/r/gamedev/

GitHub Support Community https://github.community

Google Search https://google.com

HTML5 Game Devs Forum https://www.html5gamedevs.com

JVM Gaming https://jvm-gaming.org

NVIDIA Developer Forum https://forums.developer.nvidia.com/c/visual-and-

game-development/192

The Game Creators https://forum.thegamecreators.com

TigSource Forum https://forums.tigsource.com/index.php

Unity Forum https://forum.unity.com

Unreal Engine Forum https://forums.unrealengine.com

Then, we performed an open coding in which we manually analyzed the candidate discussion

links to derive a categorization of video game bad smells. The coding has been conducted using

online spreadsheets. Each coder used their independent spreadsheet, however, a separate (and

common) sheet was used to list possible smell names. When tagging each link, the annotators first

used a Boolean field to indicate whether the examined post was relevant or not (i.e., whether it
discussed or not video game bad smells), and then, if they answered positively to the previous

field, they could select (using a drop-down menu in a cell) among the smells already available. If

none of those smells fit, the annotator added a new smell name to the common sheet. Similarly, the

coder could use a further drop-down cell (linked to another sheet) to indicate a possible high-level

category to which each smell belongs.

As shown in Fig. 1, this process was performed iteratively over multiple rounds. Four authors

were involved in the process, and each candidate link was assigned to two independent annotators.

In the first round, we manually analyzed 340 links. This is a sample ensuring a ±5% margin of error

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.buildbox.com/forum/index.php
https://discuss.cocos2d-x.org
https://gamedev.stackexchange.com
https://www.gamedev.net
https://www.reddit.com/r/gamedev/
https://github.community
https://google.com
https://www.html5gamedevs.com
https://jvm-gaming.org
https://forums.developer.nvidia.com/c/visual-and-game-development/192
https://forums.developer.nvidia.com/c/visual-and-game-development/192
https://forum.thegamecreators.com
https://forums.tigsource.com/index.php
https://forum.unity.com
https://forums.unrealengine.com


1:6 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

with a confidence level of 95%. The first 40 links of this first round were jointly examined, discussed,

and categorized by all four annotators, to achieve a common understanding of the problem. Also,

during this first phase, we defined possible high-level categories under which smells should be

classified.

After the annotation round was completed, the annotators jointly discussed all links, including
those where there was an agreement. This is because, on the one hand, given the open nature of

the coding, it was not possible to compute a meaningful inter-rater agreement, and on the other

hand, we wanted to avoid having cases where the annotators (wrongly) agreed by chance. After

resolving disagreements, the annotators jointly analyzed, over multiple refinements, the list of

smells, performing a merger where necessary. Also, the annotators finalized the set of high-level

categories to be used for grouping the video game development smells. In the end, 5 categories

were identified, i.e., Game Design and Logic, Physics, Animation, Multiplayer, and Rendering. At

the end of the first round, we identified 81 smells. Jointly we discussed the collected labels: we

grouped and renamed similar ones (29 smells into 13 labels) and removed 13 smells (e.g., those
related to a specific technology used). Finally, our catalog contained 52 game bad smells and it has

been used for the second round of validation.

After completing the first round, we performed two further rounds, in which the annotators

inspected additional 102 and 130 smells respectively. Themain goal of these rounds was to determine

the extent to which we saturated the set of possible game bad smells. Those were the remaining

from the 572 after having classified the first 340 ones. During these further rounds, the spreadsheet

had an additional drop-down cell to classify the smell along with the five categories. After each

round, as done for the first round, we performed a joint inspection of the classifications and a

conflict resolution. At the end of both rounds, we added only 8 smells: 4 during the second round

and 4 during the third.

Finally, we jointly, iteratively scrutinized the overall set of smells 60 (52 from the first round

plus 8 from the remaining two rounds), merging them where appropriate, or moving them around

categories where we realized the assigned category was not appropriate. More precisely, we merged

30 smells into 10 categories and we removed 12 very specific smells, e.g., technology-related ones.

One of the smells introduced in the second round and two smells introduced in the third round

were merged into existing smells. In summary, the second and third rounds of labeling contributed

with 3 and 2 new smells respectively. As a result, we obtained a total of 28 bad smells grouped into

the 5 categories mentioned above.

The annotation activity took on average 5 minutes per post for each annotator, for a total of

572 · 2 · 5 = 5720 min. ≃ 96 hours. Clear negative cases took a few minutes, whereas relevant ones

up to 15 minutes. This effort was complemented by the meetings we performed, i.e., one agreement

meeting, 4 discussion meetings, and two final smell catalog refinement meetings (one after the first

round and one at the end), for a total of 13 hours. Also, note that part of the refinement activity

was performed offline through spreadsheets.

2.4 Survey with Developers
After having identified possible bad smells in video game development, we wanted to investigate

whether they are considered relevant by professional video game developers. We pursued this goal

by surveying developers selected through LinkedIn. The survey structure is shown in Table 2. After

a short description of the survey goals (as well as of the implications of the catalog we created)

and a consent form, the survey is composed of seven sections. The first five sections allow the

respondents, as shown in Fig. 2, to provide a relevance assessment to each smell using a 5-level

Likert scale [14] where 1 star means “not critical”, 3 stars means “neutral” and 5 stars means “highly

critical”. To facilitate the understanding of the problem, each smell is described by also providing

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:7

some examples. We explicitly instructed the respondents not to answer a question if they feel that

they do not have enough expertise about the specific problem. Also, the respondent could use an

open-text field to add additional comments.

Table 2. Survey structure.

Sec. Category

1 Design and Game Logic
Smell #1 relevance assessment (as in Fig. 2)

Smell #2 relevance assessment

. . .

2 Multiplayer
3 Animation
4 Physics
5 Rendering
6 Additional Smells

Would you like to suggest any other kind of smell not mentioned in the previous

sections?

7 Demographics
Personal Information (Optional)

How many years of experience do you have in video game development?

How many years of experience do you have in software development?

Which languages do you use to develop video games?

Which game engine/framework do you use to develop video games?

Fig. 2. Example of Question using 5 points Likert scale (from “Not Critical” to “Highly Critical”) and an
Opened-ended question for comments.

After the first five sections, a further section was used to allow respondents to suggest additional

bad smells they feel were important, but that we did not mention in the previous sections. Finally,

we had an optional demographics section featuring, other than fields to (optionally) provide contact

and affiliation information, questions about (i) the number of years of professional development

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:8 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

experience, (ii) the number of years of video game development experience, (iii) the programming

languages, and (iv) the game engines used for video game development. Note that we decided

to avoid compulsory demographic questions. This is because, based on past experiences, such

questions may discourage some respondents from completing the survey, and our goal was to

maximize the number of answers. As it will be clearer later, we have mitigated this limitation by

analyzing the effect of experience on the provided answers.

We tested the survey with a collaborator that had previous experience in video game development,

and we also used his feedback to estimate the time it would take to complete the survey. Note that

his answers were excluded from our results.

2.5 Participants’ selection
We used LinkedIn as a research tool for the process of participant selection. LinkedIn is one of

the largest professional social networks in the world and it has been used in previous studies

surveying software developers, e.g., [44]. During the selection process, as inclusion criteria, we

targeted software developers with experience in video game development.

We organized a brainstorming session between the authors to define a set of keywords related

to video games that could be used to gather the participants. Our research query contains the

following keywords: “Game developer”, “Game”, “Game designer”, “Game development”, “Game

engine”, “Mobile gaming”, and “Skeletal animation”
2
.

We searched for participants, obtaining, for each keyword but “Skeletal animation” over 1,000

results, namely: 90,000 for “Game developer", 3,020,000 for “Game”, 77,000 for “Game designer",

259,000 for "Game development", 11,000 for “Game engine", and 3,500 for “Mobile gaming". Then,

we picked the top 200 (in terms of relevance) for each set, and two authors manually analyzed

their profiles to make sure that they satisfy the selection criteria (i.e., participants should have

industrial experience in game development). The validation was based on their profiles, summary,

and previous projects. Through this validation process, we ensured to reach only professionals

with experience in game development. For the developers who passed the inclusion criteria, we

sent a connection request. Then, for those who accepted we sent the survey link.

We invited a total of 642 professional developers and asked them to participate in the survey, by

sending them an invitation message (available in our replication package) explaining the goals of

our study, and clarifying that (i) the participation in the survey is voluntary, (ii) personal data will

be treated as strictly confidential, (iii) the approx. time to answer the survey was estimated to be

about 20 minutes, and a participant can withdraw at any time. The survey has been administered

through SurveyHero
3
. The whole process of participants’ selection, invitation, and survey response

took about 2 months.

2.6 Participants’ demographics
In the end, we collected 76 responses, i.e., we achieved a return rate of 11.8%, which is in line with

many software engineering surveys conducted outside specific companies [53, 55]. A total of 61

respondents provided answers to demographic questions. 30 of them had a Bachelor’s Degree

qualification, 13 a Master’s Degree, 5 High school, 3 a Ph.D., and 9 other qualifications, such as a

Diploma, i.e., a certification awarded by colleges after two years of specialized training. A total of

36 respondents described themselves as Software Developers, 5 as Game designers, 4 as Technical

Managers, 14 respondents mentioned other roles such as Production Manager or Game Developer

teacher, while 2 did not provide an answer about their occupation.

2
https://unity.com/how-to/beginner/game-development-terms

3
https://www.surveyhero.com

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://unity.com/how-to/beginner/game-development-terms
https://www.surveyhero.com


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:9

The software development experience of the respondents (46 answers) ranges between 6 months

and 24 years, with a median of 3 years. Their video game development experience (54 answers)

ranges between 6 months and 24 years, with a median of 5 years. Note that we have also taken

into account developers having less than one year of experience in development since we checked

manually their background and years of experience on LinkedIn profiles.

In terms of game engines being used, the most adopted one among our respondents is Unity

(44) followed by Unreal Engine (27), Blender (11), and CryEngine (2). In total, 17 respondents

used other engines/frameworks, e.g., proprietary engines or Cocos2d. Regarding the programming

languages used to develop video games, the most widespread ones are C/C++ (45 preferences) and

C# (45), followed by Java/JavaScript (16), Python (16), and PHP (4). Instead, 9 respondents used

other languages to develop video games, e.g., Swift or HTML. Note that the programming language

is often related to the game engine being used (e.g., C# for Unity, C/C++ for Unreal engine, or

Python for Blender). Also, note that the sum of responses for game engines and programming

languages goes above the number of responses as one could provide multiple answers.

3 RESULTS: THE CATALOG OF VIDEO GAME BAD SMELLS
Fig. 3 depicts an overview of the identified video game bad smells, grouped in the five categories

(design and game logic, multiplayer, animation, physics, and rendering). In the following, we discuss

in detail all the smells for the five categories. First, we describe each smell, also providing examples

from the discussions we encountered. Then, we discuss possible ways to avoid it, reporting, and

discussing the survey respondents’ assessment and comments. For the five categories, results of

the survey questionnaires are reported, using the chosen 5-level Likert scale, and using diverging

stacked bar charts. The figures use different levels of colors to show different levels of the Likert

scale, whereas percentages refer to aggregated negative, neutral, and aggregated positive values.

When discussing smells and their countermeasures, we keep traceability towards forums or

survey responses. That is, a smell solution described while reporting an example comes from that

example directly, whereas we use the notation Rx to trace discussions to survey responses. Note

that the rationale for choosing examples among the classified discussion was mainly done with

the purpose of favoring clarity, i.e., we have chosen examples that better explain the problem (and

possible solutions) in the paper. Therefore, the examples may not be fully representative of all

problem instances. Finally, other discussions not traced explicitly are based on the authors’ analysis

and knowledge of the problem.

3.1 Design and Game Logic
This category includes smells concerning decision choices related to the overall game architecture

(e.g., what is on the clients, what is on the server), low-level design (e.g., how different concerns

of a video game are separated), the organization of game objects (e.g., relations between similar

objects, and object hierarchies), and implementation choices (e.g., where the input handling goes
and where the code handling actions and animation goes). The effect of poor design choices can be

multiple, ranging from maintainability problems, i.e., the video game becomes difficult to evolve, to

performance problems, directly affecting the users’ experience. The perceived relevance of design

smells is reported in Fig. 4. All but three smells were perceived as critical/highly critical by the

majority of respondents.

A smell that was perceived particularly crucial by developers is the one related to Creating

components/objects at run-time, that has been considered as critical/highly critical by 83%

of the respondents. The scenario in which this smell may occur is, to some extent, similar to what

happens when one creates DBMS connections every time in a servlet without using a connection

pool. This problem is even more relevant in video games, because, in some scenarios, several

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:10 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

Game smells

Design and Game Logic

Search by string/ID

Creating components/objects at run-time

Lack of separation of concern

Prefer static classes instead of singleton 
for single instance entities in the game

Dependencies between objects

Poor design of object state 
management
Static coupling
Bloated asset

Weak temporization strategy

Multiplayer

Status stored on clients

Inefficient data transfer between client and host/servers

Reload entire workspace when a new client connects

Syncing multiple textures in a multiplayer environment

Animation

Improper use of rigging

Multiple animators over a model components

Moving player vs. moving the rest of the 
scene in an endless-world like game

Continuously checking if position/rotation is 
within the boundary

Use objects over particle systems when not 
needed

Too many keyframes in animation

Physics

Improper mesh settings for collider

Heavy physics computation in update

Setting objects velocity and override forces

Rendering

Object drawing/rendering not properly optimized

Excessive number of elements in the scene

Texture or polygon choices cause aliasing

Sampling and rendering to the same texture

Suboptimal, expensive choice of lights, shadows, 
or reflection

Issues in material rendering

Fig. 3. Overview of Video Game Bad Smells Grouped into Categories.

objects (e.g., bullets being fired) may need to be created in fractions of a second without degrading

performance and user experience. The usual solution for this smell is the use of an object pool

from which pre-created objects are taken and then released. For example, developers discuss on

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:11

11%

5%

8%

8%

13%

12%

20%

25%

31%

83%

80%

77%

63%

63%

53%

48%

33%

32%

7%

14%

15%

29%

24%

35%

32%

41%

36%

Search by string/ID (75)

Creating components/objects at run−time (76)

Lack of separation of concerns (75)

Prefer static classes instead of singleton for single instance entities in the game (75)

Dependencies between objects (75)

Poor design of object state management (75)

Static coupling (74)

Bloated asset (75)

Weak temporization strategy (76)

−100 −50 0 50 100
Percentage

Response Not Critical Lowly Critical Neutral Critical Highly Critical

Fig. 4. Design and Game Logic Bad Smells: Developers’ Perception (number of answers in parenthesis, the
three percentages refer to the overall negative, neutral, and positive responses).

GameDev
4
about “declaring many objects during the game’s initialization and storing them in an

object pool” is the best way to avoid garbage collection of static objects: “a static object pooler will
be the best choice performance-wise”. Some respondents highlight how this issue is particularly

important, e.g., R3 “one of the major performance hindering things you can do is instantiating and

destroying objects”, while others like R2 despite agreeing mention that “there are cases of this that

I would consider acceptable, such as spawning buildings in a tower defense game”. Respondents

that disagreed, e.g., R25 mentions that this is “not that critical on small-scale projects and if used in

moderation.” Also, R39 mentions that creating/destroying objects at run-time could be acceptable

while prototyping to avoid this becoming cumbersome.

Weak temporization strategy concerns wrong assumptions made on the time elapsed

between subsequent game object updates, and was considered critical/highly critical by 80% of

the respondents. A typical mistake is the game object update in a frame-based update (e.g., a fixed
movement is performed at every frame), making the animation speed dependent on the frame

rate, and therefore varying on different devices, or even on the same device in different contexts.

Common solutions imply the use of time-based updates (FixedUPdate in Unity, which is executed

with a fixed frequency, whereas the conventional Update method is executed at every frame), as also

mentioned by R37 and R48, or making the movement/animation proportional to the time between

two frames (e.g., in Unity, multiplying the movement magnitude by the Time.deltaTime, i.e., the
time elapsed between two subsequent frames) as also mentioned by R30. One respondent (R51)

highlights how an early fix of this problem is highly desirable: “Grows more and more difficult to

fix the longer the issue persists.” Looking at a different technology, developers discuss this issue on

the Unreal Engine forum
5
about the temporization strategy on a car multiplayer game. Simulating

with two players, “car response is slightly more ”slow” or ”sluggish”” on the client-side. To solve

the problem, “delta time scaling” has to be taken into account when controls are handled since

introducing this scaling will make your input less dependent on frame rate.

Lack of separation of concerns is the manifestation of bad design that, in principle, can

occur in any software application, not only video games. However, this is one of the cases for

4
https://gamedev.stackexchange.com/questions/101784/what-is-a-reasonable-way-to-avoid-gc-issues-in-unity

5
https://forums.unrealengine.com/t/different-physics-behavior-on-server-and-client-when-tested-on-weak-pc/101125/5

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/101784/what-is-a-reasonable-way-to-avoid-gc-issues-in-unity
https://forums.unrealengine.com/t/different-physics-behavior-on-server-and-client-when-tested-on-weak-pc/101125/5


1:12 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

which we decided to retain the smell in our catalog, because, also given the way game engines are

conceived, some developers may be tempted to produce code exhibiting such a smell. A typical

example is represented by cases in which source code handling controller inputs are mixed with

code producing object animations. 77% of the respondents found this smell to be critical/highly

critical. This smell is discussed on Game Development
6
site of StackExchange: developers state

that “[h]aving Logic and Data in the same object/class/structure is considered bad practice, and allows
hackery that is likely to cause as many issues as it solves. Thus, to simplify the code and reduce its

complexity, it is good practice to separate game logic from game data: e.g., “[a] motion system, which
updates position according to velocity, should not be able to read/change character data”. For example,

one could attach to a game object multiple classes handling different concerns, such as movement,

firing, defense, etc. Also, nowadays some game engines are trying to mitigate the problem, e.g.,
Unity has developed a new input system that allows the developer to define logical actions bound

to different input controllers. Where this is not available, developers should develop themselves

virtual controllers.

Bloated assets refer to reusable assets (e.g., complex game objects) bringing with them

several elements (e.g., various types of textures one can add to the object or various predefined

animations). This may result in assets that are unnecessarily big especially when they contain assets

that are rarely used. This smell was considered critical/highly critical by 63% of the respondents. For

example, developers discuss this smell on the Stack Exchange Game Development
7
: “example scenes

with unnecessary art assets, scripts etc” and recommend to remove unneeded assets “not so much
to save space, mostly to keep everything "clean"”, otherwise “you will have classes with conflicting
names, three sets of redundant animations for "jump" etc”.
Poor design of object state management, also perceived as critical/highly critical by

63% of the respondents concerns how a game object state is stored and handled, e.g., using simple

state variables and conditioned code, or a state-strategy design pattern [19]. R50 mentions that “. . .
using if/else statement to manage the state of an object wouldn’t allow easy expansion and would

be rather hard to maintain.” For instance, this is discussed in the JVM Gaming forum
8
. Developers

debate on what is the best way to implement a state game manager, whether it is better to use

design patterns, e.g., State-Strategy patterns against if/switch statements. A developer advises to

not “. . . introduce design patterns and then try to force your application into them, but design your
solution straightforward”. This is because design patterns “really hardly make things easier”, thus
they have to be used only when needed, as pointed out by previous literature [29, 60].

Search by String/ID occurs when an object is identified (or searched) by its string identi-

fier/tag, for example when determining whether a collision occurred with a specific object. More

specifically, if an object does not hold a reference to another (needed) object, it can access it through

a search, which can be performed by name or by tag. This smell is perceived as critical/highly critical

by 53% of the respondents. String comparisons, and even worse searching objects by their ID, could

in principle cause performance lags. Also in mobile development (e.g., Android development) this is

discouraged and found to be energy greedy [58]. As R23 mentions “I would recommend comparing

instances”, R54 suggests using enums, and R1 mentions other side effects “Not only performance

issues but prone to errors (tags/strings)”. However, many other developers highlight that the perfor-

mance degradation depends on how frequently such a comparison occurs (R3, R4, R13, R25, R39, R51,

6
https://gamedev.stackexchange.com/questions/172991/entity-component-system-implementation-choices/173601#

173601

7
https://gamedev.stackexchange.com/questions/97712/do-i-have-to-commit-the-downloadable-assets-for-unity-to-the-

repo-or-a-referenc/97726#97726

8
https://jvm-gaming.org/t/using-a-switch-statement-to-determine-state-of-game/56771

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/172991/entity-component-system-implementation-choices/173601#173601
https://gamedev.stackexchange.com/questions/172991/entity-component-system-implementation-choices/173601#173601
https://gamedev.stackexchange.com/questions/97712/do-i-have-to-commit-the-downloadable-assets-for-unity-to-the-repo-or-a-referenc/97726#97726
https://gamedev.stackexchange.com/questions/97712/do-i-have-to-commit-the-downloadable-assets-for-unity-to-the-repo-or-a-referenc/97726#97726
https://jvm-gaming.org/t/using-a-switch-statement-to-determine-state-of-game/56771


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:13

R65). An example of this smell is discussed in the Stack Exchange Game Development forum
9
where

developers state: “beware that using Transform.Find or GameObject.Find should be avoided as much
as possible, because it’s quite slow” and they also highlight that “searching items by string arguments
is a bad practice anyway”. A recommended solution is “to use GetComponentInChildren<T>, and
attaching to the game objects you want to be found a script (it can be empty) with name T”, because
this limits the search space. As developers mention, the proposed solution is robust against any

change on the searched object and it also works in case object setup is defined at run-time.

Further smells were considered as critical/highly critical by a minority of the respondents.

The excessive presence of dependencies between objects creates, as in any other software

systems, maintainability problems and even increased fault-proneness [7, 11]. When developing

video games, an alternative would be to dynamically couple components instead. However, as R39

points out: “This come back to GetComponent being used to often unnecessarily. Other than this, it

makes the code a little bit less readable than just having a variable containing the reference all the

time.” Therefore, developers prefer to favor performance over ensuring decoupling, also considering

that such decoupling mechanisms also have a negative effect on source code readability. Similarly,

this is discussed on the Stack Exchange Game Development forum
10
state “. . . bad practices about

gameObject/transform/components getters are connected with using them heavily, multiple times on
every update” and fix the performance problem through “caching mechanism”, as R39 pointed out.

Singleton vs. static and static coupling deserve further discussion. The singleton vs.

static choice is an endless question in object-oriented development [19]. Both static class and

singleton as global variables should be used with moderation since they create a strong coupling

with entities using them. However, the singleton design pattern allows for more flexibility in

comparison to static classes. Static classes cannot be instantiated, cannot implement Interfaces or

inherit a class, and can have only static members (constructor, fields, methods, properties, events),

while a singleton can leverage all features of object-oriented programming. With static classes,

one cannot control when the constructor is called and no parameters can be passed
11
. Several

respondents, as expected, indicate that they make wise usage of both singletons and static classes,

i.e., the typical answer is “it depends” (R1, R2, R5, R32, R43, R48, R50, R76). Some explain when to

use one and when to use others in the context of video games, e.g., R43 “I use static classes for Data
and Core methods. Singletons for managers/controllers. They serve different purposes”, or R48

“Static classes should be used to store constants and some utility methods while singleton is used

to reference objects universally (e.g., Game Managers should be Singletons while Utility classes

should be static)”. Some advocate the use of singletons (R2, R5, R20, R30). For example, R20 says

“Singleton has visible and controlled initialization time.” Others point out their disadvantages, R38

“Prefer dependency injection.”, R52 “singletons, especially when on monobehaviors, will increase

complexity”. Finally, some respondents point out solutions available in specific game engines, i.e.,
R1 “Unreal has for example the GameInstance which is a singleton” or R47 “In Unity, even better to

use Scriptable Objects”. Developers in the game forums also have different views on the usage of

singletons. For example, a participant in the Java gaming forum
12
mentioned that both singletons

and static global variables are anti-patterns and this person recommended the usage of dependency

injection instead. On the other hand, one developer mentioned the importance of using singletons

in the specific context of unity engines
13
.

9
https://gamedev.stackexchange.com/questions/142546/in-unity-how-to-get-reference-of-descendant/142550#142550

10
https://gamedev.stackexchange.com/questions/74566/using-this-gameobject/74568#74568

11
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-constructors

12
https://jvm-gaming.org/t/design-question/35647/4

13
https://gamedev.stackexchange.com/questions/182053/is-it-bad-form-to-use-singletons-in-unity

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/142546/in-unity-how-to-get-reference-of-descendant/142550#142550
https://gamedev.stackexchange.com/questions/74566/using-this-gameobject/74568#74568


1:14 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

Static coupling occurs when the coupling between game objects is enforced through the

game engine IDE, e.g., by dragging a game object on another game object’s property. For example,

one could drag a material towards a renderer to set the appearance of a game object. In some

specific environments (e.g., Unity) if a class attached to a game object (i.e., a class inheriting from
MonoBehaviour) has a public or [SerializeField] field, such a field appears in the IDE inspector,

and it is possible to drag there any object compatible with the field type to create a dependency.

That is, let us assume that a script attached to a game object named Player has to access another

game object named Ball. Therefore, the script will have a [SerializeField] field of type game object,

e.g., named myBall. This field will be visible in the Player game object inspector, and dragging

the game object ball into the field will create the dependency. On the one hand, this could be

considered a bad practice, because dependencies are not stored (and visible) in the source code, yet

they are encoded in the components’ properties through the IDE (as discussed on Unity forum
14
).

On the other hand, this is found to be very convenient by developers, and not considered as a bad

practice in previous work [9]. The alternative to static coupling is to create dependencies in the

code through component names (e.g., using GetComponent-like APIs). In our study, only 21% found

static coupling not to be a smell, and 23% disagreed with that. Some respondents (R2) indicated

that this way of creating coupling is, instead, ideal, and the problem of “hidden dependencies” is

mitigated by IDEs such as JetBrains Rider [1], which allows a developer to inspect game object

variables. Also, R20 mentions that IDE-based coupling makes possible the use of the game engine

dependency analyzer (not possible from code-based dependencies). Respondents who agreed this is

a smell also mentioned (R38) that static coupling may be appropriate in some cases (e.g., to couple

scene objects with scripts), and less appropriate in other cases (e.g., to couple scripts themselves).

Nevertheless, some developers still explain why static coupling can be a bad practice, namely R44

“Soft dependencies are hard to search for.”

Key findings: Bad choices in design and game logic are particularly important when they

have a tangible effect on performances and users’ experience in general. Very often, this is

preferred also at the cost of reducedmaintainability, e.g., by preferring an increased coupling over
solutions having negative effects on performance. Moreover, the magnitude/severity of a smell

matters, e.g., a smell potentially causing performance problems is still considered acceptable in

circumstances where its effects are negligible.

3.2 Multiplayer
This category includes poor decision choices related to the design and implementation of a game’s

multiplayer component. In this case, as Fig. 5 shows, all smells were perceived as critical/highly

critical by the majority of respondents. Multiplayer, online games are gaining popularity: a report

by GlobalWebIndex [21] indicates how 26% of gamers leverage online games to create new contacts

with others.

The first smell (and also perceived as critical/highly critical by the 91% of respondents) con-

cerns storing the game status on clients. In general, status synchronization in distributed

systems may be a problem for other applications too, e.g., distributed data-intensive applications

and in distributed systems in general. Video games have the peculiarity of requiring real-time

synchronization to avoid disrupting the players’ experience, and also may suffer from malicious

attacks to cheat the game. Having the status stored on clients could cause synchronization problems,

especially in case of unexpected disconnections from clients. Developers discuss this problem on

14
https://forum.unity.com/threads/int-wont-decrease-to-zero.802566/#post-5331405

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forum.unity.com/threads/int-wont-decrease-to-zero.802566/#post-5331405


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:15

2%

3%

15%

10%

91%

79%

73%

61%

8%

18%

12%

30%

Status stored on clients (66)

Inefficient data transfer between client and host/servers (66)

Reload entire workspace when a new client connects (66)

Syncing multiple textures in a multiplayer environment (61)

−100 −50 0 50 100
Percentage

Response Not Critical Lowly Critical Neutral Critical Highly Critical

Fig. 5. Multiplayer Bad Smells: Developers’ Perception (number of answers in parenthesis, the three percent-
ages refer to the overall negative, neutral, and positive responses).

the Stack Exchange Game Development forum
15
. They also propose a solution: “You should store

the stack [game status] on the server and send it to the clients as they join. This will have also the
advantage of preventing around with messing with the stack.” Furthermore, the status could be

potentially hacked by a player for cheating in an online competition. This problem was explicitly

pointed out by seven respondents (R2, R4, R5, R27, R32, R39, and R48). An example of this security

issue is discussed on the same forum
16
as above. Developers state: “PlayerPrefs” are “VERY insecure”

location to store game data since they “are extremely easy to edit, due to them being pretty much plain
text and not encrypted in any way, so the values can be directly edited”. The proposed solution is to

serialize the data creating “dots a function by which you save your data to a binary file”. Some game

engines have alternative solutions for state management. For example, Unity allows for handling

the state locally and provides primitives/components to synchronize, but it has features to establish

who has the authority to modify the status of a given object. For example, only the owner can

modify the status of a player game object.

Another common bad smell is Reload entire workspace when a new client con-

nects. This can occur when a new player connects in an online game and loads all his game

objects; which can be a single object (e.g., a humanoid or a vehicle), or multiple objects. This

new connection should not cause a complete reload of the game space for all players, but just a

differential update. 79% of the respondents agreed on this smell. Some respondents were more

neutral, pointing out that this issue in some games could be avoided by design, e.g., R2 explain that it
“depends on if players can join while gameplay is running, or if they can only join while the rest of

the players are in some kind of lobby/between match state.” Other developers discuss the exchange

of game information between Clients and Server
17
, explaining that it is not needed “. . . to send

updates for all objects in the game, to all clients.”. They recommend selecting only the necessary

objects that a client can see, and sending only their updates to the client. In conclusion, the problem

can be addressed by design preventing its cause, i.e., client connection during a game, happening at

all, or by properly specifying (through the game engine networking APIs and facilities) a limited

number of objects that need to be created and rendered when a new client connects.

A more generic problem (which can have different causes) is the inefficient data transfer

between a client and the host/server, e.g., either because more data than needed is

transferred, or because data transfer is performed when not required. This problem was considered

critical/highly critical by 73% of the respondents. For example, in the Stack Exchange Game

15
https://gamedev.stackexchange.com/questions/108827/is-it-bad-practice-to-for-the-server-to-request-data-for-a-

client-from-another-c

16
https://gamedev.stackexchange.com/questions/124221/is-it-bad-practice-to-store-inventory-and-scores-in-playerprefs

17
https://gamedev.stackexchange.com/questions/62096/how-do-i-duplicate-a-box2d-simulation-mid-simulation

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/108827/is-it-bad-practice-to-for-the-server-to-request-data-for-a-client-from-another-c
https://gamedev.stackexchange.com/questions/108827/is-it-bad-practice-to-for-the-server-to-request-data-for-a-client-from-another-c
https://gamedev.stackexchange.com/questions/124221/is-it-bad-practice-to-store-inventory-and-scores-in-playerprefs


1:16 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

Development forum
18
developers discuss on using sockets to let clients servers communicate. One

developer mentions that sending full information to every client repeatedly is a bad practice. The

WebSockets protocol does not have enough speed for an online game, developers point out “[t]he
technique is effective, but is not well suited for applications that have sub-500 millisecond latency or high
throughput requirements”. Thus, a solution could be to limit the transfer only to primitive/essential

data (as also R48 pointed out).

The least important problem (i.e., perceived as critical/highly critical by 61% of the respondents)

is related to problems of Synchronization of game objects featuring multiple tex-

tures. As pointed out by R48, to avoid this kind of problem, “syncing texture should be executed

on client machine based on data received from server.” For instance, on HTML5 GameDev forum
19

developers deal the problem of FPS (Frames per Second) dropping down caused by drawing canvas

for dynamic texture. As a solution, they choose to update the canvas “just twice per second instead
on every frame”. In essence, continuous synchronization of properties such as textures may become

excessively expensive. Therefore, a proper performance analysis is required to carefully tune the

update frequency, balancing sometimes the realism of the objects’ look and feel with performance.

Key findings: Multiplayer-related smells mainly concern how data is transferred and synchro-

nized between clients and server/host. The aforementioned smells mainly have performance-

related side effects, e.g., lags when playing the game. Moreover, security issues need to be taken

into account in multiplayer games, e.g., by preventing a client to change the state of objects it is

not owning.

3.3 Animation
Animation-related smells concern how game objects are animated. The six animation-related smells

received, in general, a milder agreement than others. Indeed, as shown in Fig. 6, the percentage of

agreements ranges between 42% and 60%, with, in general, a relatively high percentage of neutral

responses (between 26% and 40%).

15%

12%

10%

12%

16%

24%

60%

58%

54%

48%

45%

42%

26%

30%

36%

40%

39%

34%

Improper use of rigging (60)

Multiple animators over a model component (61)

Moving player vs. rest of the scene in endless−world game (62)

Continuously checking if position/rotation is within the boundary (60)

Use objects over particle systems when not needed (62)

Too many keyframes in animation (59)

−100 −50 0 50 100
Percentage

Response Not Critical Lowly Critical Neutral Critical Highly Critical

Fig. 6. Animation Bad Smells: Developers’ Perception (number of answers in parenthesis, the three percentages
refer to the overall negative, neutral, and positive responses).

The first smell is related to using objects over particle systems when not needed.

Particle systems are sets of sprites, following certain animation patterns, projected towards the

18
https://gamedev.stackexchange.com/questions/124246/input-and-output-of-a-server-side-game-using-web-

sockets/126556

19
https://www.html5gamedevs.com/topic/15564-help-with-dynamic-textures/#comment-88321

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/124246/input-and-output-of-a-server-side-game-using-web-sockets/126556
https://gamedev.stackexchange.com/questions/124246/input-and-output-of-a-server-side-game-using-web-sockets/126556
https://www.html5gamedevs.com/topic/15564-help-with-dynamic-textures/#comment-88321


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:17

camera. They are typically used to create effects such as fire, smoke, water, etc. Creating some

effects (e.g., the presence of flies or butterflies in the sky) using game objects is unnecessary and

heavyweight unless such objects need to interact with the rest of the game. Particle systems—

animated sprites projected to the cameras—are more recommended instead. As pointed out by

R5, “This should be pretty obvious, but if ignored will cause massive frames per second drop.” For

instance, in the Unreal Engine forum, we found a discussion
20
on how to render “physical bullets”.

Developers assert “. . . for a realistic approach bullets are never visible, the only thing someone
can notice are the vapor trails and the heated up bullets at night”, thus the best way to render

them is using “Hit-Scanning” being “less [performance] intensive”, i.e., dots generating hundreds or
even thousands of bullets in quick succession, you might experience some performance issues if each
one is calculating velocity based on a ‘ProjectileMovementComponent”. Note that Hit-Scanning is a

programming technique casting a ray in the direction of the shot to determine where an object is

pointing. In essence, particle systems alone are sufficient when the only goal is to create a visual

effect. Whereas, when the game element needs to interact with other objects, and be subject to

physics, then a game object, possibly complemented by particle systems, is required.

There is a smell related to how the movement of an object is handled in a confined region, e.g.,
a car or a character on a track. In some games, instead of using colliders, this is implemented by

continuously checking if position/rotation is within the boundary. As mentioned

by R5, while this is necessary, a compromise should be pursued (too much checking would result

in a lag, whereas enough would compromise the behavior). Also, R50 mentions how, in the end,

this check does require a heavy calculation and in some circumstances, it can be preferred over

colliders. Such a problem is mentioned, for example, in a Stack Exchange Game Development

Forum discussion
21
. Developers want to improve the performance of collisions detection. The

proposed solution is spatial hashing, i.e., a technique to spatially divide the scene and keep into

account objects belonging to each portion. When an object crosses the border between two parts,

the collision detection algorithm checks for collisions only within objects belonging to that part,

therefore reducing the required computation.

In some game engines (e.g., Unity), the animator is a component that defines the animation

behavior of a game object, for example through a state machine (Multiple animators over a

model component). Such a state machine triggers different animations depending on whether a

condition occurs. For example, if the vertical speed is greater than a given threshold, a character

may start to walk, while it can turn left or right when the horizontal speed changes. On some

occasions, developers may decide to attach multiple animators to the same object, e.g., to handle

different kinds of actions such as walking or firing, or to animate portions of the object, e.g.,moving

its head. Some respondents (R5, R39, R51) explicitly mentioned not having experience with this

concept (and in general this may be the reason for the high number of “Neutral”). However, some of

the respondents, e.g., R48 and R50, agreed that managing multiple animators would be painful, and,

if needed, it would be much better to divide a single animator into layers, i.e., sub-state machines. In

a discussion of the Stack Exchange Game Development forum
22
, developers debate the possibility

of using multiple animators to separately animate the head and the rest of the body. They mention

that, from a performance perspective, there is no impact, if one uses multiple animator components.

Nevertheless, considering maintainability effects, they also advise opting for that only if needed.

When creating a third-person game in an endless world, e.g., a racing track, one can decide to

create a real model of the world and move the character with the camera, or else move the track

20
https://forums.unrealengine.com/development-discussion/content-creation/10301-efficient-rendering-of-physical-

bullets-no-hit-scanning

21
https://gamedev.stackexchange.com/questions/74858/how-can-i-improve-my-collision-detections-performance

22
https://gamedev.stackexchange.com/questions/129110/parent-and-child-with-different-animators

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forums.unrealengine.com/development-discussion/content-creation/10301-efficient-rendering-of-physical-bullets-no-hit-scanning
https://forums.unrealengine.com/development-discussion/content-creation/10301-efficient-rendering-of-physical-bullets-no-hit-scanning
https://gamedev.stackexchange.com/questions/74858/how-can-i-improve-my-collision-detections-performance
https://gamedev.stackexchange.com/questions/129110/parent-and-child-with-different-animators


1:18 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

under the character (Moving player vs. rest of the scene in endless-world game). In

the first case, the world model to be created may be very large, and possibly expensive, yet managing

the game object’s animation would be fairly simple, as it is simply an object, with a camera attached

behind, that moves in a world. In the second case, it is not necessary to model the entire world nor

to move the object, but there is a need for creating the environment behind the object as the latter

moves. Some respondents (R30, R39, R50) mention how this design decision may depend on the

game. Also, R30 mentions how, by using object pooling mechanisms mentioned in Section 3.1, it is

possible to piece-wise create visible parts of the scene on the fly, giving the impression that the

character is moving, and also, as explained in Section 3.1, mitigating the overhead due to continuous

objects’ creation. Developers discuss this smell on Unreal Engine forum
23
, explaining challenges in

simulating the movement of a space ship while it is moving at a high speed. They suggest moving

the entire scene around the ship and not the ship itself to avoid “wacky” physics and glitches due

to high speed.

The Improper use of rigging, i.e., how game objects are connected to form a complex,

animated object (e.g., by connecting the bones of a character) can result in animation-related

problems. For example, if an arm is not properly attached to the body of a character, it may be able

to rotate towards unnatural positions. As R30 mentioned: “If the rigging is not properly done then

the animation will not sync or give the feeling that we wanted it to give.” However, the majority of

respondents were neutral. One possible explanation (not mentioned though) is they are not directly

involved in this problem, especially when models are mostly reused and adapted. For instance, a

discussion
24
in the StackExchange Game Development Forum highlights the importance of using

rigging for animations. In particular, developers point out that “[i]t’s very difficult to move an object
independently to match an animation” and recommend “. . . to attach the object to the skeleton of
the mesh” since, although not perfect, “it will almost always be good enough”. Through rigging, the

animator will handle all the complexity needed to compute “the precise dimensions of both meshes
(character[/hand] and object) and the movements of the animation at every frame”.

Finally, when an animation is designed manually, this can be done by setting “key frames”, i.e.,
specific frames over the animation cycle in which the object assumes a given position or in general

a given status (Too many keyframes in animation). That is, key frames set user-defined

values for objects’ position, rotation, or other properties, while values for frames in-between are

obtained through interpolation curves. As pointed out by R39, it “would cause problems if it is done

with sprite, but rigged animation shouldn’t pose that much problem.” In general, the controversial

responses obtained for this smell indicate that in general it is not a big issue, and it really depends

on the kind of animation (rigging model vs. sprites). In the HTML5 GameDevs forum
25
, there is an

interesting example of this smell. Developers highlight that performance issues can be due to a

high number of key frames in an animation, and therefore suggest “to remove most keyframes and
just leave a few interpolations” to improve performance.

23
https://forums.unrealengine.com/t/walking-inside-a-space-ship-while-it-is-moving-at-high-speeds/42183

24
https://gamedev.stackexchange.com/questions/104096/how-do-i-get-the-position-and-rotation-of-an-animated-

object-in-unity/105908#105908

25
https://www.html5gamedevs.com/topic/22796-problem-with-animation-in-blender-with-new-exporter/#comment-

129973

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forums.unrealengine.com/t/walking-inside-a-space-ship-while-it-is-moving-at-high-speeds/42183
https://gamedev.stackexchange.com/questions/104096/how-do-i-get-the-position-and-rotation-of-an-animated-object-in-unity/105908#105908
https://gamedev.stackexchange.com/questions/104096/how-do-i-get-the-position-and-rotation-of-an-animated-object-in-unity/105908#105908
https://www.html5gamedevs.com/topic/22796-problem-with-animation-in-blender-with-new-exporter/#comment-129973
https://www.html5gamedevs.com/topic/22796-problem-with-animation-in-blender-with-new-exporter/#comment-129973


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:19

Key findings: Animation-related smells are considered less critical than the other categories

of smells by our survey respondents. A possible reason for that is because we mainly targeted

developers, whereas some of the animation problems are handled by other specialists, e.g.,
artists and experts in computer graphics, belonging to a video game development team. That

being said, animation-related smells range from problems related to the general game animation

architecture (e.g., choice of particle systems vs. animated objects or design of endless games) to

model-specific problems (e.g., rigging or setting of key frames). The former may be of interest

to developers too, while the latter may pertain more to a model designer.

3.4 Physics
We have identified three types of smells related to how the game physics is implemented. Their

perceived importance is reported in Fig. 7, and two out of three were considered critical/highly

critical by the majority of the respondents.

6%

5%

16%

87%

75%

40%

6%

20%

44%

Improper mesh settings for collider (61)

Heavy physics computation in update (63)

Setting objects velocity and override forces (62)

−100 −50 0 50 100
Percentage

Response Not Critical Lowly Critical Neutral Critical Highly Critical

Fig. 7. Physics Bad Smells: Developers’ Perception (number of answers in parenthesis, the three percentages
refer to the overall negative, neutral, and positive responses).

The first smell, which received a very high level of agreement (87%), is related to the heavy-

weight physics computation in game object updates. While this smell may appear very

similar to bottlenecks in any conventional software, in this case, it is particularly important to

distinguish what is executed only when a scene (or some objects) are created from what is executed

continuously, e.g., at every frame or with a fixed frequency, for the fixed updates. This smell occurs

when the game physics (i.e., the forces acting on each object) is continuously recomputed and then

applied to produce animations. On the Stack Exchange Game Development Forum
26
, developers

discuss this problem “to set the velocity of an object every loop”. This could cause performance drops,

and a possible solution can be to update the object’s velocity only when the external velocity value

changes, introducing, for instance, an if statement checking this change.

While it is the norm to leverage update cycles to recompute physics and separate this from

animations, attention needs to be paid to avoid this becomes a bottleneck, for example by updating

game objects’ physics only when necessary, or in general by optimizing such computations (see

example on the Stack Exchange Game Development Forum discussed above
26
). Four respondents

(R30, R37, R40, and R50) clearly stress the use of time-based updates (known as Fixed Updates in
Unity) instead of updates performed at every frame, although this does not solve the problem.

Others suggested updating physics every N cycles (R37), or using optimized approaches such as

lookup tables (R41) to fasten physics computation.

Impropermesh settings for a collider could also cause problems. 75% of the respondents

pointed out this smell as critical/highly critical, and 20% were neutral. There exist different types of

colliders. A mesh-based collider is composed of many (possibly small) triangles and fits a game

26
https://gamedev.stackexchange.com/questions/51356/is-it-bad-practice-to-set-the-velocity-of-an-object-every-

loop?r=SearchResults

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/51356/is-it-bad-practice-to-set-the-velocity-of-an-object-every-loop?r=SearchResults
https://gamedev.stackexchange.com/questions/51356/is-it-bad-practice-to-set-the-velocity-of-an-object-every-loop?r=SearchResults


1:20 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

object’s shape, but it may negatively affect performances. Then, there are “coarser” colliders having

the shape of boxes, cylinders, capsules, or spheres. Unless the object has a simple shape, the latter

may not be able to properly fit the object, and can cause less precise collisions, yet being less

resource demanding. Some respondents like R5 and R50 recommend always using the simplest

collider, but, as explained above this can cause game glitches, i.e., unwanted collisions. In the Stack

Exchange Game Development Forum
27
, there is a discussion about the bad practice of detecting

collisions per pixel, leading to expensive physics computation. The right way to handle collision

is to use polygon shapes. In essence, a lot depends on how collisions would occur in a game. For

example, if a car can only impact against a wall or other cars, then a box collider may be sufficient.

Instead, if objects may collide against its windshield, then a mesh collider would be needed.

Setting object velocity and override forces means that an object’s speed is not

determined based on forces applied to it, but, rather, programmatically set, e.g., as a result of a
player’s input. Unsurprisingly, this smell has been considered quite controversial (44% neutral, and

only 40% agreeing). This also depends on the fact that in most cases developers rely on predefined

components to determine the movement of an object based on the received inputs. For example,

Unity provides the CharacterController component for that. However, when the object’s movement

has to be determined based on multiple forces, to also allow some scenarios not contemplated by

predefined components, then it may be necessary to directly modify the object’s velocity. One

reason is that some games intentionally have no physics, as one respondent (R50) indicated: “A

game without physics shouldn’t have to use forces to translate his units”. A respondent (R25) who

strongly disagreed indicates that the game engine s/he is using has poor physics management,

therefore “ homebrewed physics systems are usually a better option if there is the time, money and

energy”, although, in this case, a separation between physics and movement is still possible and

desirable. Regarding this smell, we found two interesting discussions
2829

on the Stack Exchange

Game Development forum. They mainly highlight that directly setting the velocity on a rigid body

is a bad practice since it “cancels all other forces acting on the rigidbody”. Another side effect occurs in
presence of “other non-kinematic non-static rigidbodies blocking the object’s path” leading the engine
to “give it as much force as it needs to push them away without slowing down” and consequently

“[y]ou might witness "fun" game mechanics like rigibodies getting launched into orbit or getting pushed
through solid walls.” A possible solution is to avoid directly setting the objects’ velocity, and apply

any additional force instead.

Key findings: Smells related to the game physics concern the way the game physics is being

computed, through scripts or by leveraging existing components, and by setting-up colliders.

Unsuitable choices may cause in some cases performance issues (e.g., heavyweight updates
or colliders), but also game glitches, e.g., due to coarse collision handling or improper physics

computations.

3.5 Rendering
Rendering smells concern issues related to the way objects are drawn/rendered, as well as the

various visual effects in the games. Bad choices in this regard could not only cause performance

problems but also result in visualization glitches, e.g., aliasing or, in general, objects not properly

27
https://gamedev.stackexchange.com/questions/17222/xna-platformer-collision-perpixel-vs-rectangle

28
https://gamedev.stackexchange.com/questions/153419/proper-way-to-set-a-rigidbodys-maximum-velocity

29
https://gamedev.stackexchange.com/questions/186505/what-are-the-dangers-of-setting-rigidbody-velocity-directly-

for-movement-and-wha

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/17222/xna-platformer-collision-perpixel-vs-rectangle
https://gamedev.stackexchange.com/questions/153419/proper-way-to-set-a-rigidbodys-maximum-velocity
https://gamedev.stackexchange.com/questions/186505/what-are-the-dangers-of-setting-rigidbody-velocity-directly-for-movement-and-wha
https://gamedev.stackexchange.com/questions/186505/what-are-the-dangers-of-setting-rigidbody-velocity-directly-for-movement-and-wha


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:21

drawn. As shown in Fig. 8, all but two smells were considered critical/highly critical by the majority

of respondents.

5%

7%

6%

10%

20%

20%

84%

79%

77%

60%

47%

40%

11%

15%

16%

29%

32%

40%

Object drawing/rendering not properly optimized (61)

Excessive number of elements in the scene (62)

Texture or polygon choices cause aliasing (60)

Sampling and rendering to the same texture (58)

Suboptimal, expensive choice of lights, shadows, or reflection (61)

Issues in material rendering (59)

−100 −50 0 50 100
Percentage

Response Not Critical Lowly Critical Neutral Critical Highly Critical

Fig. 8. Rendering Bad Smells: Developers’ Perception (number of answers in parenthesis, the three percentages
refer to the overall negative, neutral, and positive responses).

Themost important problemhere is the lackofoptimizationwhendrawing/rendering

objects. For example, too far, not visible objects are always redrawn, or all objects of a scene

are redrawn at every frame (and not just those that have been changed). For example, on Unreal

Engine forum
30
developers discuss whether to apply invisible material to some parts of the scene

(body-parts) will improve the performance. They confirm that “Applying a transparent material to a
mesh will not make it render faster” since “there is a cost to translucency and masking. The vertices
are still there, just deferring to render specific parts of the material”. A possible solution could be

to use LOD (Level of Detail) generator “to create new LODs that can look just as good as the full
resolution mesh”. 84% of the respondents perceived this smell as critical/highly critical. R4 mentions

that this is “one of the biggest sources of unnecessary framerate drop”, while R37 argues that a

clear solution for this smell and the other smells mentioned below is to “use occlusion culling to

make sure GPU have to only compute objects at the camera’s sight.” Specifically, the occlusion

culling determines the view angle of a camera and how far it can “see” objects. By reducing the

occlusion culling, very far objects are no longer visible by the camera and, while in some cases this

may reduce the level of detail, it can contribute to performance improvement.

Another problem, considered critical/highly critical by 79% of the respondents, is related to

visualization effects, i.e., to the sub-optimal, expensive choice of lights, shadows, or

reflections. For example, some lights whose behavior does not depend on the game dynamics

could be “baked” statically instead of being rendered in real-time. In other words, when a shadow,

a light, or a reflection is baked, it does not change when objects affecting it move. Therefore, it is

suitable for effects produced by static objects only. Indeed, R5 mentions that “the concept of "baking"

is quite important and should be taught early.” That is, developers should perform an inventory

of static and dynamic objects, as well as of their related effects, to properly plan where baked or

real-time effects should be used. Also, the excessive usage of shadows or reflections could cause

performance issues, as pointed out by R39, “shadow and reflection cost a lot of power and should

be optimized.” On the one hand, the aforementioned effects make the video game more realistic and

improve its look and feel. On the other hand, they can be performance-demanding, especially on

limited-resource devices. An interesting example is discussed on Unreal Engine forum
31
: developers

ask if there exists a way to “[d]ynamically light up a big hall without too much performance lost”.
30
https://forums.unrealengine.com/t/ue4-applying-invisible-materials-to-some-bodyparts-improve-fps/149799

31
https://forums.unrealengine.com/t/dynamically-light-up-a-big-hall-without-too-much-performance-lost/78721

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forums.unrealengine.com/t/ue4-applying-invisible-materials-to-some-bodyparts-improve-fps/149799
https://forums.unrealengine.com/t/dynamically-light-up-a-big-hall-without-too-much-performance-lost/78721


1:22 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

More precisely, when a player comes into a room, the light is turned on with variable intensity and

the attenuation radius causes performance issues. Several suggestions have been made to solve this

problem, e.g., try to use less light, make some lights static, or try to split big mesh into smaller ones.

Problems related to the presence of an excessive number of elements in the scene is

considered critical/highly critical by 77% of the respondents. The way this problem can be solved is

by (i) incrementally rendering elements only when they become visible, (ii) reducing the camera

occlusion culling, as also mentioned above for another smell, i.e., the distance over which objects

are no longer visible, and (iii) simplifying the objects being shown. For example, R30 mentions

that “if some meshes are not important, it’s better not to put it or you can change the rendering

setting to high”. Some other respondents mentioned that this kind of problem is more on the engine

optimization side than on the programmers’ or computer graphics’ side. R56 mentions that “the

engine needs to be able to support multiple elements without hindering performances”, while

R54 clarifies the rendering capability of the Unreal Engine: “UE (Unreal Engine) 4 handles up to 1

million mesh and UE 5 20 million”. A really simple example of this smell is discussed on Unreal

Engine forum
32
: developers underline that performance issues are related to a high number of

objects on the scene which leads to render a large number of objects on the same time. A possible

solution is merging the objects to have “fewer meshes to process”. The main issue is the number of

objects (each one will impact performance). Hence, even if it is not a complex model (adds to the

number of draw calls), it is better to merge objects that are very simple to lower the number of

objects, starting from those using the same material.

Sampling and rendering to the same texture was considered critical/highly critical

by 60% of the respondents, and it is related to scenarios when one is writing to a texture while it

is being rendered, causing undefined behavior in the GPU. A recommended practice is, instead,

to create a texture copy, modify it, and then render it again. On the Game Development forum of

StackExchange, developers state that “. . . reading and writing to the same texture in a shader is bad
practice (not surprisingly) and will cause undefined behavior on GPUs” and propose also a solution to

that: “. . . copy the target texture to a new texture and then read from the copy while still writing to
the original target texture”. R5 mentions that “this is both very important and unlikely to happen

(most people know not to do that)”. In other words, while the behavior related to this smell can

be indeed problematic, most game developers do not perform such advanced (run-time) texture

modifications. R39 mentions that some game engines have already a solution for this problem, e.g.,
“Unity seems to handle that automatically (cloning material when called directly)”. In essence, the

avoidance of this problem can be achieved on the one hand by developing static analysis tools able

to detect the problem, similarly to race condition detectors. On the other hand, game engines could

provide avoidance mechanisms, such as the cloning of Unity or, for example, allowing mutually

exclusive access to textures.

Two smells were perceived as less important, with a higher percentage (the majority) of neutral

responses and a minority of agreements. This is likely due to the background of our respondents.

Most of them are game developers and not specialized in computer graphics, i.e., they rely on

expertise from others for such specific problems.

Issues in material rendering happen when a material is adopting the wrong mesh types,

or, for example, the presence of side-by-side materials could cause visualization issues. As pointed

out by R54, the severity of this smell can depend a lot on the engine. This smell was considered

critical/highly critical by only 47% of the respondents, and 32% were neutral. This could be because

the relevance of this smell highly depends on the context. In a discussion
33

on Unreal Engine

32
https://forums.unrealengine.com/t/beginner-performance-issues/96340

33
https://forums.unrealengine.com/t/is-there-any-hit-on-performance-with-2-sided-materials-vs-non-2-sided/76736

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forums.unrealengine.com/t/beginner-performance-issues/96340
https://forums.unrealengine.com/t/is-there-any-hit-on-performance-with-2-sided-materials-vs-non-2-sided/76736


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:23

forum, developers asked whether using a 2 sided material against a non 2 sided affects performance.

Developers point out that “. . . it costs more performance to render a material two sided than not.”, but
they also emphasize that “everything in game design is about context so without context the answer is
yes/no/maybe”. In this case, there is a trade-off: choosing or not an accurate rendering depends on

the game context or targeted devices, e.g.,, whether the game is either desktop project, Mobile, or

VR. Regarding two-sided material, developers advise to “[not] avoid it any cost - just make sure not
to use it on everything unless absolutely necessary”. For this smell, other than a suitable performance

evaluation, automated tests able to identify the presence of visualization glitches, e.g., by analyzing

game videos, may be desirable.

Finally, Texture or polygon choices cause aliasing occurs when a bad choice of object

texturing or number/type of polygons of a game object causes aliasing, i.e., lines and surfaces that

exhibit jagged edges. This smell was perceived critical/highly critical by 40% of the respondents,

with 40% being neutral. Confirming what we conjectured above, R39 mentions that this is “more a

problem on the 3D artist side”. Also, R39 mentions that “gameplay and performance are mostly

unaffected by this” (indeed the smell mostly results in visualization problems than in performance

problems). An example is discussed on the Game Development site of StackExchange
34
: developers

asked for a possible solution to “no smoothing applied to the textures”. Jagged and black lines were

displayed around a figure.

Key findings:While ensuring proper rendering should be a responsibility of computer graphics

experts rather than developers, such problems are perceived as very important, because they

often have tangible effects on the game’s visual or its performance. In several cases, also depend-

ing on the employed hardware, there is a tradeoff between quality of detail and performance.

From a software designer’s perspective, it is important to allow the game to have a varying

level of detail depending on the hardware characteristics.

3.6 Other smells the study respondents suggested us
In total, 13 respondents gave us additional suggestions about the relevance of other types of smells

not considered in our study. Two of the authors performed an (independent) manual classification

of such comments, after splitting those with multiple suggestions (in total, we ended up with 22

rows to classify) followed by a discussion. It was found that they belong to different categories:

• Conventional code smells (5 suggestions): in six cases, respondents pointed out (known) con-

ventional smells, including abuse of references/coupling to static classes, abuse of logging

statements, use of magic numbers, bad naming conventions, or incorrect usage of design

patterns.

• Issues more related to the game story or human-computer interaction (4 suggestions): these are
not strictly related to the game design or implementation. Instead, they mention problems

related to easy-to-use/understand user interfaces, gameplay/game experience, design of the

game story itself, and lack of proper communication/misunderstanding between different

stakeholders involved in the video game development. While the former problems are beyond

the scope of our work, the latter is particularly interesting. As the respondent explains, these

are problems leading to reengineering “artists deciding to change the elbow of a character,

breaking all the animations” or “sound designers adding Rigidbody to prefabs . . . and the

coders spend 3 days to figure out a problem that came from that . . . "

34
https://gamedev.stackexchange.com/questions/110286/how-to-fix-texture-edge-artefacts

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://gamedev.stackexchange.com/questions/110286/how-to-fix-texture-edge-artefacts


1:24 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

• Duplicates (3 cases): in three cases respondents reported problems that could be a specialization

of some of the bad smells that we already considered, namely (i) Recalculating object state

inside Update (which is our Poor design of object state management); (ii) “excessive

use of strings instead of constants”, which, depending on the specific case, can be brought to

our Search by String/ID or it can be a conventional magic number smell; and (iii) using

game objects as folders, which is a case of Bloated asset.

• Additional game smells (2 suggestions): finally, we found two cases where respondents pro-

posed two smells that we did not consider. The first one is about the use of the “Script

Execution Order” occurring in game engines such as Unity, where scripts attached to all

game objects are executed in an endless loop. This may cause unexpected behavior, because

it is not clear whether actions happen in a certain order. The second one is the “wheel of

death pattern of using Any State to transition anywhere in an Animator Controller”. This

is a specific issue occurring in Unity, where the Animator Controller is a component that

governs a game object’s animation through state machines. The Any State35 is a special state
used to specify that, should a given event occur, a transition towards a certain state must

happen, regardless of the previous state (which is therefore modeled with this special state).

However, in general, this could be also seen as a special case of Poor design of object

state management.

3.7 Are the studied smells specific to video games?
While our study has focused on bad smells occurring during video game development, as also

discussed in the previous sections, some of the smells may apply to other domains as well. Never-

theless, such smells are particularly relevant during video game development, and therefore we

decided to keep them in our taxonomy.

Broadly speaking, smells related to the last three categories (Animation, Physics, and Rendering)

are all specific to video games, or, possibly, can be applied to computer graphics, special effects

in movies, or simulation. Instead, smells related to design and game logic or smells related to

multiplayer (except for the one related to Synchronization of game objects featuring

multiple textures) can also occur in other types of systems. To this aim, Table 3 provides, for

each game smell applicable to other domains, an explanation of why it is particularly important in

video game development, as well as scenarios where it can apply elsewhere.

4 LESSONS LEARNED
This section discusses the lessons learned for developers, educators, and researchers.

4.1 Lessons for developers
Prioritize the removal and avoidance of smells having a negative effect on the game ex-

perience. Our results, for example those related to design and game logic smells, but also those of

other smell categories, such as animation and rendering, highlight how very often smells become

problematic only if they have a tangible effect in terms of game performance, or on the gamers’

experience, which is the highest priority during development. If this is not the case, the smell is not

considered as particularly critical and therefore worthwhile to be removed. Also, smells having a

negative impact on maintainability are considered as less critical. This is a substantial perspective

shift from conventional software development and to the existing literature of code smells and

antipatterns [12], where there is a high emphasis on program comprehension, maintainability and

design for change [2, 25, 30, 61]. When focusing on the video game development domain, while

35
https://docs.unity3d.com/Manual/class-State.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:25

Table 3. Game smells applicable to other domains

Game Smell Relevance for video games Where applies elsewhere

Design and Game Logic

Search by String ID Dependenciesmay be created by

ID; use of tags to determine the

objects’ identity

Search of Android views [58]

Creating compo-

nents/objects at run-time

In games, some types of objects

(e.g., bullets) are frequently cre-

ated and destroyed in many in-

stances

Database connections in client-

server (e.g., Web) applications

Lack of separation of con-

cern

Game development framework

may encourage mixing-up in-

puts, physics, and animation

Any cases where the struc-

tural [13] or conceptual [38] co-

hesion is low

Prefer static classes instead

of singleton

(Static) Game objects must be

unique to avoid access errors

Use of singleton vs. static

classes largely discussed

in object-oriented develop-

ment [19]

Dependencies between ob-

jects

Need to achieve a tradeoff be-

tween decoupling and good per-

formance and temporization

Excessive coupling is a general

problem in software develop-

ment [7, 11, 13]

Poor design of object state

management

Some game behavior, e.g., move-

ment or animation may require

complex, change-prone state

models

Proper solutions for state-

management advocated in

object-oriented development

[19]

Static coupling Video Game IDEs entail the vi-

sual creation of dependencies

In principle, this might happen

in other IDEs too

Bloated assets Models may contain redun-

dant/unlikely to be used ele-

ments, e.g., textures or anima-

tions

The general concepts may ap-

ply elsewhere, e.g., one can cre-

ate bloated assents in software

configuration management, or

bloated containers

Weak temporization strat-

egy

Perceived speed should be

frame-rate independent

A similar smell may occur

in any time-sensitive systems

structured as an endless loop

Multiplayer

State stored on clients May cause game cheating May occur in other distributed

systems, e.g., online banking
Reload entire workspace

when new clients connect

Game experience disruption

caused by poor game lobbyman-

agement

Some other types of applica-

tions, e.g., online GPS naviga-

tors may exhibit similar issues

Inefficient data trans-

fer between client and

host/servers

Avoiding lags is essential in on-

line games

In general, true for distributed

systems

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:26 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

designing for change is still important, e.g., to allow releasing patches or downloadable content, the

developers’ main focus is on the gameplay, and therefore a coding practice is considered problematic

only up to the point it may lead towards performance degradation effects. These considerations

influence the way video game developers should prioritize quality assessment and improvement

activities, e.g., by combining smell identification with an assessment of their intensity and possible

effect on performance.

Smells are highly game/framework dependent. Depending on the type of game under de-

velopment, on the adopted technology, or the targeted hardware and software platforms, developers

may or may not encounter a specific type of smell, or may consider it more or less important.

Indeed, mitigation strategies adopted to deal with bad smells highly depend on the specific problem

being solved. For example, as also discussed in Section 3.4, physics-related bad smells may not be

an issue at all for games where physics does not apply, or they depend on the extent to which the

game physics needs to be customized with respect to what is available out-of-the-box.

Similarly, some performance problems may occur only in a multiplayer context, e.g., where
multiplayer-specific smells such as Reload entire workspace when a new client con-

nects may even interact with other smells, such as those related to an expensive rendering, e.g.,
excessive number of elements in the scene. Moreover, as pointed out before, the perfor-

mance impact of a smell is a key factor when assessing its relevance, therefore it is also important

to determine the hardware and software characteristics of the targeted platforms, as some smells

may affect more older consoles or mobile devices.

Early fix of smells is highly desirable: Some smells may become cumbersome to fix if they

persist longer and developers have to prevent these smells at the design phase, i.e., early in the

video game development life-cycle. For instance, R39 states that “the concept of "baking" is quite

important and should be taught early” when commenting about the rendering smell sub-optimal,

expensive choice of lights, shadows, or reflections. In general, as discussed in Sec-

tion 3.5, a proper and early planning of static vs. dynamic rendering of effects is highly desirable.

Moreover, when commenting about the smell Creating components/objects at run-time,

R40 mentions that it is “very important to start early while in production. During prototyping not

so much, since it makes development cumbersome, but the infrastructure needs to be put early,

because it is a nightmare to create later and this can impact performance by a lot on small devices.”

Heterogeneous teams: Another emerging problem is the lack of communication between

development team members leading to re-engineering. Video game development involves many

skilled professionals [8], i.e., Scripter, Game Designer, Graphics/Animation Programmer, etc. R48

highlights some problems derived from lack of communication between team members: “artists
deciding to change the elbow of a character, breaking all the animations, sound designers adding
Rigidbody to prefabs because Wwise requires it and the coders spend 3 days to figure out a problem
that came from that”. In this context, as discussed in Section 6, specific studies have analyzed video

game-specific project management smells [57].

Good practices from software development are still valid for video game development:

Some good practices coming from general software development, e.g., clean up the project removing

unnecessary code (dead code) or Single Responsibility Principle [40], are also valid for video game

development. In some cases, developers are “encouraged” to introduce some smells by the IDE.

For instance, Unity allows to statically couple objects through the game engine IDE using the

[SerializedField] field attached to a game object, in this way the object will be visible to the IDE

inspector (i.e., the Static Coupling smell). However, as R1 points out “. . . it is a real advantage
for designers” even though it is “[n]ot visible and can be broken” easily. This also calls for better tool

support still aiding developers on the one side, while avoiding maintainability problems on the

other side.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:27

4.2 Lessons for educators
On teaching design principles and goals for the video game domain: more often than not,

when teaching software design, there is a lot of emphasis on design for change, and in general on

targeting maintainability goals. When designing video games, performance and user experience

are the primary design goals. Therefore, developers should be instructed about design choices that

could positively impact performance (e.g., the use of object pools avoid searching objects through

strings) and, at the same time, they should be careful with choices (e.g., heavy usage of design

patterns) that could have a positive effect on maintainability, but that may have a negative impact

on performance.

Elements of computer graphics are necessary also for software developers: video game

developers are not necessarily in charge of creating 3D models and animations, and will unlikely

be artists. At the same time, when integrating these elements into their products, they should be

able to grasp the basics of 3D modeling and computer graphics. As our study has shown, smells

belonging to certain categories (e.g., Animation, and above all Rendering) originate from wrong

choices made when integrating graphical models into a game, even when developers mainly reused

out-of-the-box assets produced by others.

4.3 Lessons for researchers and tool makers
This work paves different research work for researchers, as well as for companies developing IDEs

or tools aimed at supporting video game development.

Game-specific smell detectors. Primarily, our study triggers the development of video game-

specific bad smell detectors. Following what has been done in previous work [9] for five game

smells which have been confirmed also in our study, it would be desirable to develop specific

detectors for the smells we have identified in our study.

Smell severity is relevant wrt. performance. Especially for smells causing performance

issues, the smell severity and resulting effect may vary from case to case. Therefore, static analyzers

could be complemented with specific dynamic analysis tools, or testing generation tools, aimed

at exercising specific components of a video game where a smell is likely to exist. Moreover, as

discussed above, smell detectors should provide a smell severity and priority indicator based on

the extent to which a smell type, and its intensity, is expected to have an effect of the game’s

performance.

Smell removal recommendations. & Misuse game engine and facilities. Smell detectors

could be accompanied with recommenders that, based on the available knowledge or, even better,

by learning from past changes, would be able to automatically suggest a refactoring or, in general,

a solution for a given smell.

Ideally, the aforementioned tools could be integrated into popular video game development IDEs.

As of today, some IDEs are able to identify some game-specific problems. For example, JetBrains

Rider
36
[1] already tell developers if they are comparing object tags using the == operator, suggesting

alternative solutions. Also, it reminds that the Update() method may become critical because it

is executed at every frame (without checking its content, as GameLinter [9] does). Finally, it is
able to identify too frequently-invoked APIs in a source code file. Therefore while some solutions

for a limited set of problems are available, there is a room for a better integration of game smell

detection and avoidance in the IDEs.

36
https://www.jetbrains.com/lp/dotnet-unity/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:28 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

5 THREATS TO VALIDITY
Threats to construct validity concern the relationship between theory and observation. The main

threat of this kind of study (as other studies following a similar protocol [15, 23, 24, 44, 46, 52, 56, 62])

is that, by analyzing forum posts, one gets a perceived indication of what a bad smell/practice is. To

some extent, this is also true for the survey, although the latter is less subject to our interpretation

than the forum posts. Indeed, the relevance analysis performed through the survey helps to mitigate

the threat that, by reading the posts, we could have misinterpreted the bad smells expressed there.

That being said, once the catalog of bad smells is available, it would be desirable to conduct further

studies, e.g., field studies or analyses of existing video games. A further threat could be related

to the misunderstanding of the smell description by the respondents. We mitigated this threat by

having a comprehensive description including examples.

Threats to internal validity concern factors, internal to our study, that could have influenced

our results. The selection of candidate posts could have been affected by the specific queries we

performed on the forums. To mitigate this threat, we considered generic-enough queries. Moreover,

we identified possible terms during an iterative process in which we used the query terms to

search over game forums and a search engine (Google). Last, but not least, while missing some

key terms could have resulted in an incomplete set of smells, we have mitigated this threat by

asking the survey participants to list smells not considered in our study. A further threat can be

due to subjectiveness or errors occurring when labeling the posts. We have mitigated this threat

by (i) having multiple independent annotators (at least two for each post), (ii) performing a joint

training on a subset of 40 posts, and (iii) jointly discussing all cases. Note that, since we performed

an open card sorting in an exploratory context for which no predefined categories were available

[51], computing an inter-rater agreement may not make sense (we have followed a similar protocol

used in other exploratory studies [26, 47]). That being said, to avoid the risk of an agreement by

chance, every single sample was jointly opened and discussed, even in the cases where there was

an agreement.

Perception studies based on questionnaires could suffer from subjectiveness, also in establishing

the suitable level in a Likert scale. We used a five-level Likert scale [14] also used in previous

similar studies (e.g., [50, 62]). Moreover, to mitigate possible subjectiveness upon deciding between

multiple positive or negative scores, the used representations also show the overall percentage

of negative, neutral, and positive responses. Finally, there could be the fatigue or boredom effect

experienced by participants in answering questions related to 28 bad smells. Participants had the

option to skip smells they are not confident about.

Threats to conclusion validity concern the relationship between theory and outcome and are

mainly related to the extent to which the produced catalog can be considered exhaustive enough.

We have performed the labeling over three subsequent rounds and observed how the number of

newly introduced smells in the last rounds decreased to four in both the second and third rounds.

At the same time, we believe achieving a complete saturation may be nearly impossible as it is still

possible to find further smells. We have mitigated this threat by asking the survey respondents to

indicate smells that they believe are relevant and that were not part of our catalog.

Threats to external validity concern the generalization of our findings. We have analyzed posts

from 13 popular video game development forums. Problems not discussed in those forums (e.g.,
arising when using proprietary video game development technology) might not have emerged in

our study. We have mitigated this threat by complementing the post classification with a survey

with 76 professionals.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:29

Threats to Reliability validity concern the possibility to replicate this study. We have attempted

to provide all the necessary details needed to replicate our study. We share our full replication

package [43].

6 RELATEDWORK
This section discusses related work about (i) design principles in video games, (ii) video game-

related patterns and anti-patterns, (iii) video game development practices, and (iv) studies on video

games metadata and user reviews.

6.1 Design principles in video game development
Applying design principles in video game development has been extensively studied in literature

[4, 6, 16, 31, 42, 45, 48]. Authors defined specific patterns or applied GoF design patterns (DPs) [19]

in the context of video game development.

Nystrom [45] proposes a revisited version of some GoF DPs (namely command, flyweight,

observer, prototype, singleton, and state), and a set of specific DPs for the video game domain.

In particular, Nystrom defines thirteen design patterns grouped into four categories: sequencing

patterns (related to time issues), behavioral patterns (to define and refine several behaviors in a way

they are easy to maintain), decoupling patterns, and optimization patterns (to speed up a game).

Some of our identified video game smells can be related to Nystrom’s DPs. For example, Run-Time

Objects smell, i.e., creating components/objects at run-time, is related to Nystrom’s optimization

patterns. Smells like Weak Temporization, Heavy physics, Heavy Drawing/Rendering, and Complex

Scene are related to both sequencing and optimization categories. Instead, Search By ID and Lack of

Separation of Concerns can be related to decoupling patterns and behavioral patterns respectively.

Similarly to Nystrom, in his book, Murray [42] proposes various kinds of design solutions

specifically for Unity video games, including the use of object pools or virtual controllers that,

as explained above, can be suitable solutions for some smells we have identified, i.e., creating
components/objects at run-time and lack of separation of concern.

Still on the line of proposing design solutions for video game development, Barakat et al. [6]
propose to integrate creational and behavioral DPs (namely state, strategy, prototype, and observer)

with a specific game design framework to provide the developers with some hints on what DP

to use with the main game aspects. Such integration would ease reuse and maintenance tasks.

Applying DPs to video game development requires concrete guidelines on how such DPs can be

used to solve specific problems. To this extent, Qu et al. [48] reported an experience of application of

DPs to solve different problems in video game development, including sprite and map management,

or handling the game state.

Further work investigated the impact of DPs during game development. Figueiredo et al. [16]
conduct a controlled experiment which results show how the adoption of GoF patterns has a

positive impact on video game development productivity and also reduces the number of lines of

code necessary to implement the required features. A broader set of studies on the impact of DPs

on internal quality of video games source code has been conducted by Ampatzoglou et al. [4, 5, 31].
More precisely, they first study the impact of DPs on the maintainability of two open-source games

[4]. Their results indicate that DPs help increasing software maintainability although—differently

from the findings of Figueiredo et al. [16]—they increase the code base size. Such contrasting

results seem to indicate how the impact of DPs highly depends on the context, and they may

either contribute to increase or decrease the code size, and, possibly, have a different effect on

developers’ productivity. Furthermore, Ampatzoglou et al. leveraged DPs to implement game rules

and logic [31], showing that the use of DPs in this context helps to avoid introducing undesired

complexity and to increase reusability, maintainability, and flexibility. Finally, they conduct studies

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:30 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

on the correlation between DP application, software defects, and debugging rate [5]. Their results

highlight that even if the overall number of DP instances does not correlate with defect frequency

and debugging effectiveness, some specific DPs have a significant impact on the number of reported

bugs and debugging rate.

In summary, previous work has studied the quality of video games’ source code using conven-

tional metrics, or proposed the use of DPs to solve video game development problems. Work related

to smell definition and detection is complementary to studies on the use of DPs in video game

development, and has an application when developers do not follow—or tend to deviate from—good

design and implementation practice. In that case, the definition of smell catalogs, and, consequently,

detectors, can help developers to avoid such bad practices and, where appropriate, refactor the

code using the proper design principles defined above.

Other works analyze video game failures and categorize them through taxonomies. Lewis et al.
[34] proposed a taxonomy of video game failures, capturing both temporal and non-temporal

failures. The proposed taxonomy is illustrated with numerous examples, capturing the wide breadth

of failures in modern video games. Differently from Lewis et al., our focus is on bad smells rather

than failures. Certainly, it is possible that, in some circumstances, bad smells can also induce failures,

and therefore the two phenomena can be related and worthwhile to be jointly studied.

6.2 Studies on video game patterns and anti-patterns
Some previous works study, or propose, patterns and anti-patterns related to different phases of

video game development, e.g., the elicitation of the game ideas/concepts, project management, or

coding.

Brandse and Tomimatsu [10] propose six rules that need to be followed when designing players’

challenges in video games. The rules concern the deviations of the challenge from the core gameplay,

technical implementations, player actions, information, effects on a future challenge, and the

advantage of the challenge over the player. Differently from Brandse and Tomimatsu, our work

does not deal with the game idea/concept, but rather with its development.

Ullmann et al. [57] investigate video game project management anti-patterns using 440 post-

mortems problems involving 200 video game projects. The postmortems were collected from

1997 to 2019. They also mapped the identified anti-patterns with traditional software engineer-

ing anti-patterns collected from the literature, finding that the most frequent video game project

management anti-patterns are Project Mismanagement, Death March, Shoeless Children, Cover your
assets and False Surrogate Endpoint. Ullmann et al. also identify some anti-patterns that do not have

a strict correspondence with conventional software anti-patterns. The most frequent ones among

such video game-specific anti-patterns are Feature Creep (i.e., continuously expanding the initial

scope of the game) and Feature cut (i.e., failing to prioritize features to be cut to accommodate for

another desired feature). While our work focuses on design and implementation smells rather than

on management smells, it may be useful, in future work, to investigate the interaction between the

two types of smells.

Other work is related to implementation smells [3, 9, 28]. Khanve et al. [28] manually analyze

the violation of game programming patterns in eight JavaScript games and argue that video games

need to be handled differently than conventional programs in terms of code smells. Therefore, we

can state that their findings further motivate our work, because they indicate that the detection of

conventional code smells is not sufficient to assess the quality of video games’ source code.

Vartika and Chimalakonda [3] analyze the commits, issues, and pull requests of 100 open-source

GitHub game repositories to understand the implementation issues faced by game developers.

Using topic modeling, they categorize these issues and propose a catalog of bad practices to support

video game development. Contrary to our catalog which focuses on conceptual bad smells, their

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:31

proposed catalog reports implementation issues related to frameworks and libraries used, and

faults (e.g., faulty Game controls, Invalid moves leading to a violation of game rules, or Wrong logic).
Moreover, their identified categories –because they have been obtained using topic modeling rather

than through a qualitative analysis—are not directly linked to specific problems for which concrete

solutions exist, contrary to our catalog as discussed in Section 3.

Borrelli et al. [9] propose UnityLinter, a static analysis tool to detect seven video game-specific

smells. The smell types encompass performance, maintainability, and incorrect behavior problems.

They validate the smells with a developer survey and detected smell instances using 100 unity

open source projects. Their results show that the smells have a prevalence ranging from 39% to 97%

and the tool has a precision between 86% and 100% and a recall between 50% and 100%. The main

difference with Borrelli et al. is that their work is vertical towards the definition, assessment, and

detection of seven specific smells, whereas our work aims at creating a broader catalog covering

different aspects of video game development. Note that we take also into account smells already

defined by Borrelli et al., e.g., Search by String/ID, lack of separation of concern, static coupling, and

creating components/objects at run-time. Furthermore, we assessed the importance of the smells.

To the best of our knowledge, except Borrelli et al., no previous authors assessed the importance of

video game bad smells.

6.3 Studies about video game development practices
Previous works empirically investigated video game development practices and identified com-

monalities and differences with canonical software development.

Specifically, Marklund et al. [39] conduct a literature review of empirical studies on game

development practices. Their review covers 48 papers published between 2006 and 2016, and reveals

the difficulty of accurately planning a game development project because of soft requirements. By

conducting interviews and a survey, Murphy-Hill et al. [41] uncover substantial differences between
video game development and software development. Their work also calls for more research on

video game development to help developers cope with several challenges related to development

and testing.

Other studies conduct surveys to investigate developers’ motivation and interaction in video

game development. For example, Giannakos et al. [20] conduct a study involving 78 students aged

between 12 and 17 years old, to identify factors that motivate them to participate in creative game

development activities. Their results indicate that expected effort and performance expectancy

affect students’ decision to participate in such development activities. Kamienski and Bezemer

[27] examine how game developers use Q&A forums. They found that game developers tend to

reduce their usage of Q&A Websites as they became more experienced. On summary, previous

studies highlight peculiarities of video game development with respect to conventional software

development. To that respect, our study shows that video game design and implementation choices

may suffer for specific smells, coded in our catelog.

6.4 Studies on game metadata and reviews
Finally, there are studies about video game metadata, release notes, and user reviews on distribution

platforms such as Steam.

Lin et al. examine the evolution of video games by mining data from the Steam platform [35–

37]. More precisely, they investigate the mechanism for collecting feedback through early-access

games. Their results indicate that developers update early access games more frequently but

these early access games tend to get a small number of reviews [35]. Furthermore, they study the

relationship between reviews and several game-specific characteristics. They conclude that the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:32 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

feedback obtained from both positive and negative reviews should be considered by the developers

[37].

Also by looking at metadata on distribution platforms, Lee et al. conduct empirical studies on

game modifications (mods) [32, 33]. In particular, they analyze the metadata of mods and features

characterizing the mods. Their results indicate that popular mods tend to have a high-quality

description and promote community contribution [33], and that providing official support for mods

is beneficial to improve the quality of the mods [32].

Other studies leverage platform metadata to investigate game quality. Vu and Bezemer [59]

investigate the characteristics of game jams, hackathon-like events for games. Their results show

that quality description has a positive contribution to popularity and game ranking.

Our work differs from these aforementioned studies, because they look at the video game (and its

evolution) from a user (gamer) perspective, whereas we analyze bad smells occurring during video

game design and implementation. We aim to understand the perceived relevance of identified bad

smells by developers and not only from gamers’ perspectives. Nevertheless, it might be interesting,

as future work, to investigate the extent to which game smells have an impact on the quality of the

game from a user’s perspective.

7 CONCLUSION AND FUTUREWORK
In this paper, we aimed at creating a catalog of video game development bad smells. To this aim, we

first queried 13 popular game development discussion forums as well as the Google search engine

to obtain candidate discussions. Then, we manually analyzed a statistically significant sample of

572 discussions and followed a cooperative card sorting approach [51] to elicit a catalog of bad

smells. As a result, we derived a catalog of 28 bad smells, organized into 5 categories, covering

problems related to game design and logic, physics, animation, rendering, or multiplayer.

Then, we have assessed the perceived relevance of such bad smells by surveying 76 game

development professionals. Overall, the surveyed professionals agreed about the relevance of most

of the identified bad smells, although at the same time they pointed out some cases of bad smells

that, in their development context, were not considered particularly critical. In essence, there are a

series of factors that determine the severity of a smell, and its need for removal:

• Its effect on the performance and gameplay: developers are often fine to accept maintainability

problems, while smell effects visible from the player’s side are considered as a priority;

• The smell magnitude matters: this concept, already true for traditional code bad smells [49]

becomes even more important for video game bad smells, especially because performance-

worsening smells create a tangible effect only if they are particularly severe.

• The smell may depend on the type of video game: some problems may occur only in multiplayer

games, or games targeting certain devices (e.g., mobile games).

Based on the study findings, we have formulated recommendations for developers, educators,

and researchers, to help improve video game development and prevent the occurrences of the

identified bad smells.

This work opens the road towards several pieces of future research. First, it might be worthwhile

to develop detectors for the identified smells, extending a preliminary detector that has been already

developed for five types of smells [9], but also tools, integrated into the IDE, able to automatically

propose an alternative solution or a refactoring. Second, similarly to what has been done in the

past, it may be interesting to perform studies to determine how these smells evolve over time, in

terms of introduction and removal [54], how different types of smells interact (e.g., game-specific

smells with other smells such as conventional code smells or management-related smells), but

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Video Game Bad Smells:
What they are and how Developers Perceive Them 1:33

also to determine whether some of these smells may induce bugs or other (e.g., non-functional)
problems, such as performance degradation.

ACKNOWLEDGMENTS
The authors would like to thank the participants to the survey questionnaire.

REFERENCES
[1] Rider - Fast & powerful cross-platform .NET IDE. https://www.jetbrains.com/rider/. Accessed: 2022-02-22.

[2] Marwen Abbes, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An Empirical Study of the Impact of

Two Antipatterns, Blob and Spaghetti Code, on Program Comprehension. In 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011, 1-4 March 2011, Oldenburg, Germany. IEEE Computer Society, 181–190.

https://doi.org/10.1109/CSMR.2011.24

[3] Vartika Agrahari and Sridhar Chimalakonda. A Catalogue of Game-Specific Anti-Patterns. In ISEC 2022: 15th Innovations
in Software Engineering Conference, Gandhinagar, India, February 24 - 26, 2022. ACM, 8:1–8:10. https://doi.org/10.1145/

3511430.3511436

[4] Apostolos Ampatzoglou and Alexander Chatzigeorgiou. Evaluation of object-oriented design patterns in game

development. Inf. Softw. Technol. 49, 5 (2007), 445–454. https://doi.org/10.1016/j.infsof.2006.07.003

[5] Apostolos Ampatzoglou, Apostolos Kritikos, Elvira-Maria Arvanitou, Antonis Gortzis, Fragkiskos Chatziasimidis, and

Ioannis Stamelos. An empirical investigation on the impact of design pattern application on computer game defects. In

Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek
2011, Tampere, Finland, September 28-30, 2011. 214–221. https://doi.org/10.1145/2181037.2181074

[6] Nahla H. Barakat. A Framework for integrating software design patterns with game design framework. In Proceedings
of the 2019 8th International Conference on Software and Information Engineering, ICSIE 2019, Cairo, Egypt, April 09-12,
2019. ACM, 47–50. https://doi.org/10.1145/3328833.3328871

[7] Fabian Beck. Analysis of Multi-dimensional Code Couplings. In 2013 IEEE International Conference on Software
Maintenance, Eindhoven, The Netherlands, September 22-28, 2013. IEEE Computer Society, 560–565. https://doi.org/10.

1109/ICSM.2013.96

[8] Markus Borg, Vahid Garousi, Anas Mahmoud, Thomas Olsson, and Oskar Stålberg. Video Game Development in a

Rush: A Survey of the Global Game Jam Participants. IEEE Trans. Games 12, 3 (2020), 246–259. https://doi.org/10.1109/

TG.2019.2910248

[9] Antonio Borrelli, Vittoria Nardone, Giuseppe A. Di Lucca, Gerardo Canfora, and Massimiliano Di Penta. Detecting

Video Game-Specific Bad Smells in Unity Projects. In MSR ’20: 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 29-30 June, 2020. ACM, 198–208. https://doi.org/10.1145/3379597.3387454

[10] Michael Brandse and Kiyoshi Tomimatsu. Empirical Review of Challenge Design in Video Game Design. In HCI
International 2013 - Posters’ Extended Abstracts - International Conference, HCI International 2013, Las Vegas, NV, USA,
July 21-26, 2013, Proceedings, Part I (Communications in Computer and Information Science), Vol. 373. Springer, 398–406.
https://doi.org/10.1007/978-3-642-39473-7_80

[11] Lionel C. Briand, Walcélio L. Melo, and Jürgen Wüst. Assessing the Applicability of Fault-Proneness Models Across

Object-Oriented Software Projects. IEEE Trans. Software Eng. 28, 7 (2002), 706–720. https://doi.org/10.1109/TSE.2002.

1158285

[12] William H. Brown, Raphael C. Malveau, Hays W. "Skip" McCormick, and Thomas J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis (1st ed.). John Wiley & Sons, Inc., 1998, USA.

[13] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE Trans. Software Eng. 20,
6 (1994), 476–493. https://doi.org/10.1109/32.295895

[14] Peter M Chisnall. Questionnaire design, interviewing and attitude measurement. Journal of the Market Research Society
35, 4 (1993), 392–393.

[15] Mohamed Raed El aoun, Heng Li, Foutse Khomh, and Moses Openja. Understanding Quantum Software Engineering

Challenges An Empirical Study on Stack Exchange Forums and GitHub Issues. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 343–354. https://doi.org/10.1109/ICSME52107.2021.00037

[16] Roberto Tenorio Figueiredo and Geber Lisboa Ramalho. GOF design patterns applied to the Development of Digital

Games. In Proceedings of SBGames 2015, November 11th - 13th, 2015, Teresina, Brazil.
[17] Martin Fowler. Refactoring: Improving the Design of Existing Code. Extreme Programming and Agile Methods–XP/Agile

Universe 2002 (2002), 256.
[18] GameIndustry.biz. Global games market value rising to $134.9bn in 2018. https://www.gamesindustry.biz/articles/2018-

12-18-global-games-market-value-rose-to-usd134-9bn-in-2018 (Last access: 01/01/2022).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.jetbrains.com/rider/
https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1145/3511430.3511436
https://doi.org/10.1145/3511430.3511436
https://doi.org/10.1016/j.infsof.2006.07.003
https://doi.org/10.1145/2181037.2181074
https://doi.org/10.1145/3328833.3328871
https://doi.org/10.1109/ICSM.2013.96
https://doi.org/10.1109/ICSM.2013.96
https://doi.org/10.1109/TG.2019.2910248
https://doi.org/10.1109/TG.2019.2910248
https://doi.org/10.1145/3379597.3387454
https://doi.org/10.1007/978-3-642-39473-7_80
https://doi.org/10.1109/TSE.2002.1158285
https://doi.org/10.1109/TSE.2002.1158285
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/ICSME52107.2021.00037
https://www.gamesindustry.biz/articles/2018-12-18-global-games-market-value-rose-to-usd134-9bn-in-2018
https://www.gamesindustry.biz/articles/2018-12-18-global-games-market-value-rose-to-usd134-9bn-in-2018


1:34 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

[19] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, 1995.

[20] Michail N. Giannakos and Letizia Jaccheri. From players to makers: An empirical examination of factors that affect

creative game development. Int. J. Child Comput. Interact. 18 (2018), 27–36. https://doi.org/10.1016/j.ijcci.2018.06.002

[21] GlobalWebIndex - GWI. The Gaming Playbook, https://www.gwi.com/reports/the-gaming-playbook (Last access:

23/08/2022).

[22] Robert M Groves, Floyd J Fowler Jr, Mick P Couper, James M Lepkowski, Eleanor Singer, and Roger Tourangeau. Survey
methodology. John Wiley & Sons, 2011.

[23] Alaleh Hamidi, Giuliano Antoniol, Foutse Khomh, Massimiliano Di Penta, and Mohammad Hamidi. Towards Un-

derstanding Developers’ Machine-Learning Challenges: A Multi-Language Study on Stack Overflow. In 21st IEEE
International Working Conference on Source Code Analysis and Manipulation, SCAM 2021, Luxembourg, September 27-28,
2021. IEEE, 58–69. https://doi.org/10.1109/SCAM52516.2021.00016

[24] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. Taxonomy

of real faults in deep learning systems. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020. ACM, 1110–1121. https://doi.org/10.1145/3377811.3380395

[25] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. Mining the relationship between anti-patterns

dependencies and fault-proneness. 20th Working Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013 (2013), 351–360. https://doi.org/10.1109/WCRE.2013.6671310

[26] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John C. Grundy. Practitioners’ Perceptions of the Goals and Visual

Explanations of Defect Prediction Models. In 18th IEEE/ACM International Conference on Mining Software Repositories,
MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 432–443. https://doi.org/10.1109/MSR52588.2021.00055

[27] Arthur V. Kamienski and Cor-Paul Bezemer. An empirical study of Q&A websites for game developers. Empir. Softw.
Eng. 26, 5 (2021), 115. https://doi.org/10.1007/s10664-021-10014-4

[28] Vaishali Khanve. Are existing code smells relevant in web games? an empirical study. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM, 1241–1243. https://doi.org/10.1145/3338906.3342504

[29] Foutse Khomh and Yann-Gaël Guéhéneuc. Do Design Patterns Impact Software Quality Positively?. In 12th European
Conference on Software Maintenance and Reengineering, CSMR 2008, April 1-4, 2008, Athens, Greece. IEEE Computer

Society, 274–278. https://doi.org/10.1109/CSMR.2008.4493325

[30] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An exploratory study of

the impact of antipatterns on class change- and fault-proneness. Empir. Softw. Eng. 17, 3 (2012), 243–275. https:

//doi.org/10.1007/s10664-011-9171-y

[31] Xeni-Christina Kounoukla, Apostolos Ampatzoglou, and Konstantinos Anagnostopoulos. Implementing Game Me-

chanics with GoF Design Patterns. In Proceedings of the 20th Pan-Hellenic Conference on Informatics, Patras, Greece,
November 10-12, 2016. ACM, 30. https://doi.org/10.1145/3003733.3003779

[32] Daniel Lee, Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. Building the perfect game - an empirical study of

game modifications. Empir. Softw. Eng. 25, 4 (2020), 2485–2518. https://doi.org/10.1007/s10664-019-09783-w

[33] Daniel Lee, Gopi Krishnan Rajbahadur, Dayi Lin, Mohammed Sayagh, Cor-Paul Bezemer, and Ahmed E. Hassan.

An empirical study of the characteristics of popular Minecraft mods. Empir. Softw. Eng. 25, 5 (2020), 3396–3429.

https://doi.org/10.1007/s10664-020-09840-9

[34] Chris Lewis, Jim Whitehead, and Noah Wardrip-Fruin. What went wrong: a taxonomy of video game bugs. In

International Conference on the Foundations of Digital Games, FDG ’10, Pacific Grove, CA, USA, June 19-21, 2010. ACM,

108–115. https://doi.org/10.1145/1822348.1822363

[35] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. An empirical study of early access games on the Steam platform.

Empir. Softw. Eng. 23, 2 (2018), 771–799. https://doi.org/10.1007/s10664-017-9531-3

[36] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. Identifying gameplay videos that exhibit bugs in computer games.

Empir. Softw. Eng. 24, 6 (2019), 4006–4033. https://doi.org/10.1007/s10664-019-09733-6

[37] Dayi Lin, Cor-Paul Bezemer, Ying Zou, and Ahmed E. Hassan. An empirical study of game reviews on the Steam

platform. Empir. Softw. Eng. 24, 1 (2019), 170–207. https://doi.org/10.1007/s10664-018-9627-4

[38] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the Conceptual Cohesion of Classes for Fault Prediction

in Object-Oriented Systems. IEEE Trans. Software Eng. 34, 2 (2008), 287–300. https://doi.org/10.1109/TSE.2007.70768

[39] Björn Berg Marklund, Henrik Engström, Marcus Hellkvist, and Per Backlund. What Empirically Based Research Tells

Us About Game Development. Comput. Games J. 8, 3-4 (2019), 179–198. https://doi.org/10.1007/s40869-019-00085-1

[40] Robert C Martin, James Newkirk, and Robert S Koss. Agile software development: principles, patterns, and practices.
Vol. 2. Prentice Hall Upper Saddle River, NJ, 2003.

[41] Emerson R. Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. Cowboys, ankle sprains, and keepers of

quality: how is video game development different from software development?. In 36th International Conference on

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/j.ijcci.2018.06.002
https://www.gwi.com/reports/the-gaming-playbook
https://doi.org/10.1109/SCAM52516.2021.00016
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/WCRE.2013.6671310
https://doi.org/10.1109/MSR52588.2021.00055
https://doi.org/10.1007/s10664-021-10014-4
https://doi.org/10.1145/3338906.3342504
https://doi.org/10.1109/CSMR.2008.4493325
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1145/3003733.3003779
https://doi.org/10.1007/s10664-019-09783-w
https://doi.org/10.1007/s10664-020-09840-9
https://doi.org/10.1145/1822348.1822363
https://doi.org/10.1007/s10664-017-9531-3
https://doi.org/10.1007/s10664-019-09733-6
https://doi.org/10.1007/s10664-018-9627-4
https://doi.org/10.1109/TSE.2007.70768
https://doi.org/10.1007/s40869-019-00085-1


Video Game Bad Smells:
What they are and how Developers Perceive Them 1:35

Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. ACM, 1–11. https://doi.org/10.1145/2568225.

2568226

[42] Jeff W. Murray. C# Game Programming Cookbook for Unity 3D. CRC Press, 2014, New York.

[43] Vittoria Nardone, Biruk Asmare Muse, Mouna Abidi, Foutse Khomh, and Massimiliano Di Penta. Video Game Bad
Smells: What they are and how Developers Perceive Them - Online dataset. https://doi.org/10.5281/zenodo.6327678

[44] Amin Nikanjam, Mohammad Mehdi Morovati, Foutse Khomh, and Houssem Ben Braiek. Faults in deep reinforcement

learning programs: a taxonomy and a detection approach. Autom. Softw. Eng. 29, 1 (2022), 8. https://doi.org/10.1007/

s10515-021-00313-x

[45] Robert Nystrom. Game Programming Patterns (1st edition ed.). Lightning Source Inc., 2014.

[46] Moses Openja, Bram Adams, and Foutse Khomh. Analysis of Modern Release Engineering Topics : - A Large-Scale

Study using StackOverflow -. In IEEE International Conference on Software Maintenance and Evolution, ICSME 2020,
Adelaide, Australia, September 28 - October 2, 2020. IEEE, 104–114. https://doi.org/10.1109/ICSME46990.2020.00020

[47] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi, Rocco Oliveto, Gabriele Bavota,

and Massimiliano Di Penta. Why Developers Refactor Source Code: A Mining-based Study. ACM Trans. Softw. Eng.
Methodol. 29, 4 (2020), 29:1–29:30. https://doi.org/10.1145/3408302

[48] Junfeng Qu, Yinglei Song, and Yong Wei. Applying design patterns in game programming. In Proceedings of the
International Conference on Software Engineering Research and Practice (SERP). The Steering Committee of The World

Congress in Computer Science, 1.

[49] Daniel Ratiu, Stéphane Ducasse, Tudor Gîrba, and Radu Marinescu. Using History Information to Improve Design

Flaws Detection. In 8th European Conference on Software Maintenance and Reengineering (CSMR 2004), 24-26 March
2004, Tampere, Finland, Proceedings. IEEE Computer Society, 223–232. https://doi.org/10.1109/CSMR.2004.1281423

[50] Shriram Shanbhag, Sridhar Chimalakonda, Vibhu Saujanya Sharma, and Vikrant Kaulgud. Towards a Catalog of

Energy Patterns in Deep Learning Development. In The International Conference on Evaluation and Assessment
in Software Engineering 2022 (EASE 2022). Association for Computing Machinery, New York, NY, USA, 150–159.

https://doi.org/10.1145/3530019.3530035

[51] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[52] Amjed Tahir, Jens Dietrich, Steve Counsell, Sherlock A. Licorish, and Aiko Yamashita. A large scale study on how

developers discuss code smells and anti-pattern in Stack Exchange sites. Inf. Softw. Technol. 125 (2020), 106333.

https://doi.org/10.1016/j.infsof.2020.106333

[53] Christoph Treude, Fernando Marques Figueira Filho, and Uirá Kulesza. Summarizing and measuring development

activity. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015. ACM, 625–636. https://doi.org/10.1145/2786805.2786827

[54] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, Andrea De Lucia, and Denys

Poshyvanyk. When and Why Your Code Starts to Smell Bad (and Whether the Smells Go Away). IEEE Trans. Software
Eng. 43, 11 (2017), 1063–1088. https://doi.org/10.1109/TSE.2017.2653105

[55] Gias Uddin, Olga Baysal, Latifa Guerrouj, and Foutse Khomh. Understanding How and Why Developers Seek and

Analyze API-Related Opinions. IEEE Trans. Software Eng. 47, 4 (2021), 694–735. https://doi.org/10.1109/TSE.2019.

2903039

[56] Gias Uddin, Fatima Sabir, Yann-Gaël Guéhéneuc, Omar Alam, and Foutse Khomh. An empirical study of IoT topics in

IoT developer discussions on Stack Overflow. Empir. Softw. Eng. 26, 6 (2021), 121. https://doi.org/10.1007/s10664-021-

10021-5

[57] Gabriel Cavalheiro Ullmann, Cristiano Politowski, Yann-Gaël Guéhéneuc, Fábio Petrillo, and João Eduardo Montandon.

Video Game Project Management Anti-patterns. CoRR abs/2202.06183 (2022). arXiv:2202.06183 https://arxiv.org/abs/

2202.06183

[58] Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Massimiliano Di Penta, and Denys

Poshyvanyk. Mining energy-greedy API usage patterns in Android apps: an empirical study. In 11thWorking Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India. ACM, 2–11.

[59] Quang N. Vu and Cor-Paul Bezemer. An Empirical Study of the Characteristics of Popular Game Jams and Their

High-ranking Submissions on itch.io. In FDG ’20: International Conference on the Foundations of Digital Games, Bugibba,
Malta, September 15-18, 2020. ACM, 20:1–20:11. https://doi.org/10.1145/3402942.3402981

[60] Peter Wendorff. Assessment of Design Patterns during Software Reengineering: Lessons Learned from a Large

Commercial Project. In Fifth Conference on Software Maintenance and Reengineering, CSMR 2001, Lisbon, Portugal,
March 14-16, 2001. IEEE Computer Society, 77–84. https://doi.org/10.1109/.2001.914971

[61] Aiko Fallas Yamashita and Leon Moonen. Exploring the impact of inter-smell relations on software maintainability: an

empirical study. In 35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. IEEE Computer Society, 682–691. https://doi.org/10.1109/ICSE.2013.6606614

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2568225.2568226
https://doi.org/10.1145/2568225.2568226
https://doi.org/10.5281/zenodo.6327678
https://doi.org/10.1007/s10515-021-00313-x
https://doi.org/10.1007/s10515-021-00313-x
https://doi.org/10.1109/ICSME46990.2020.00020
https://doi.org/10.1145/3408302
https://doi.org/10.1109/CSMR.2004.1281423
https://doi.org/10.1145/3530019.3530035
https://doi.org/10.1016/j.infsof.2020.106333
https://doi.org/10.1145/2786805.2786827
https://doi.org/10.1109/TSE.2017.2653105
https://doi.org/10.1109/TSE.2019.2903039
https://doi.org/10.1109/TSE.2019.2903039
https://doi.org/10.1007/s10664-021-10021-5
https://doi.org/10.1007/s10664-021-10021-5
https://arxiv.org/abs/2202.06183
https://arxiv.org/abs/2202.06183
https://doi.org/10.1145/3402942.3402981
https://doi.org/10.1109/.2001.914971
https://doi.org/10.1109/ICSE.2013.6606614


1:36 V. Nardone, B. Asmare, M. Abidi, F. Khomh, and M. Di Penta

[62] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora, Harald C. Gall, and Massimiliano Di

Penta. An empirical characterization of bad practices in continuous integration. Empir. Softw. Eng. 25, 2 (2020),

1095–1135. https://doi.org/10.1007/s10664-019-09785-8

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1007/s10664-019-09785-8

	Abstract
	1 Introduction
	2 Study Definition and Data Extraction Methodology
	2.1 Study Context
	2.2 Data Extraction
	2.3 Open coding of forum discussions
	2.4 Survey with Developers
	2.5 Participants' selection
	2.6 Participants' demographics

	3 Results: The Catalog of Video Game Bad Smells
	3.1 Design and Game Logic
	3.2 Multiplayer
	3.3 Animation
	3.4 Physics
	3.5 Rendering
	3.6 Other smells the study respondents suggested us
	3.7 Are the studied smells specific to video games?

	4 Lessons Learned
	4.1 Lessons for developers
	4.2 Lessons for educators
	4.3 Lessons for researchers and tool makers

	5 Threats to Validity
	6 Related Work
	6.1 Design principles in video game development
	6.2 Studies on video game patterns and anti-patterns
	6.3 Studies about video game development practices
	6.4 Studies on game metadata and reviews

	7 Conclusion and Future Work
	References

