Towards Understanding Developers’ Machine-Learning Challenges:
A Multi-Language Study on Stack Overflow

Alaleh Hamidi*, Giuliano Antoniol*, Foutse Khomh*, Massimiliano Di Penta, Mohammad Hamidif
* Polytechnique Montréal, TUniversity of Sannio, iUniversity of Tehran
{alaleh.hamidi, giuliano.antoniol, foutse.khomh} @polymil.ca, dipenta@unisannio.it, mohamad.hamidi@ut.ac.ir

Abstract—Machine Learning (ML) is increasingly being used
as an essential component of modern software systems. Also,
the maturity of the adopted techniques and the availability of
frameworks have changed the way developers approach ML-
related development problems. This paper aims at investigat-
ing, by analyzing Stack Overflow (SO) posts related to ML,
how the questions about ML have been changing over the
years, and across six different programming languages. We
analyzed 43,950 SO posts in the period 2008-2020, studying (i)
how the number of ML-related posts changes over time for
each programming language, (ii) how the posts are distributed
across different phases of a ML pipeline, and (iii) whether posts
belonging to different languages or phases are more or less
challenging to address. We found that some programming lan-
guages are fading while others are becoming more popular in
ML development. While model-building questions are the most
discussed in general, the level of challenges posed by the other
phases of the ML pipeline appears to be language-dependent.
Results of this work could be used to better understand ML
challenges in different programming languages, and, possibly,
to improve ML tutorials related to different languages.

Keywords-stack overflow; machine learning; machine learn-
ing Life cycle; programming language;

I. INTRODUCTION

Machine learning (ML) is increasingly becoming an es-
sential component of modern software systems. The demand
for industry adoption of ML has increased. A recent New-
Vantage Partners Big Data and Artificial Intelligence (AI)
Executive Summary shows that 92% of organizations are
increasing their pace of investment and 62% of them have
already seen measurable results from their investments in
big data and ML [1].

The growth in ML adoption produces new challenges for
software developers as reported in several studies [2]-[4].
One consolidated way to study challenges developers face
in a given field is to analyze posts on Question and Answer
(Q&A) forums such as Stack Overflow (SO) [5], [[6]. Some
studies report an increasing number of ML-related posts
on SO [5]-[7]. This indicates that, in recent years, ML
has attracted growing interest among software developers,
especially after 2015 [J8]].

However, developers may face different problems when
coping with ML in different programming languages. That
is, they may be constrained by the specific project/appli-
cation to use a language that may or may not be suitable

for ML-intensive development. While previous work [7]
has studied the increasing attention received by ML from
developers, there is little knowledge about its evolution
and variation across programming languages, and whether
different ML phases receive more attention or create more
challenges.

In this work, we systematically study what kind of
problems developers encounter in each stage of the ML
development life cycle when using a specific programming
language. We analyze 43,950 posts of SO dated from 2008
to 2020, and related to ML, to answer the following research
questions:

« RQ1: How does the number of ML-related posts related
to different programming language change over the
years?

« RQ2: How are posts distributed across different phases
of a ML pipeline, and how does this change over time?

« RQ3: To what extent are posts belonging to different
languages and different phases answered and after how
long?

We consider six programming languages, including pop-
ular ones (e.g., C/C++, Java, and Python), as well as
languages used in scientific/statistical computation (e.g., R).

As one may expect, Python has the lion-share as a
programming language. Languages such as R are still very
popular, while ML-related questions for other languages
such as C, C++, or Matlab tend to increase less, or not
increase at all. Concerning the ML phases to which questions
refer, building, evaluation and requirement are the most
frequently encountered concerns, when we consider posts
with three or more stars. Model building alone accounts for
about one-third of posts. The building and evaluation phases
are the sources of most concerns, they account for more than
50% of concerns, but it is decreasing in recent years likely
because of the availability of high-level frameworks, e.g.,
PyTorch or Keras for Python.

This work’s results can inform the research community
about the language-specific ML challenges to investigate the
solutions and improve the languages’ capabilities. Besides,
ML developers and tutorial creators can utilize this work to
get a deep perspective of ML practitioners’ language-related
challenges to provide more comprehensive PL libraries and
ML tutorials.

Search keywords related to

Extract high

SO posts with tag

Used for RQ2 & RQ3
|

High rated-ML-Python" (High rated-ML-JAVA
each PL in the title, body, posts posts

SO posts with tag |, - ning>
< machine-learning > And score> 3 -

Search keywords related

and tag of questions -
9019 =, (Fiigh rated-ML-MATLAB) (" High rated-ML-R
: posts posts

High rated-ML-C++ High rated-ML-C#
posts posts
ey

body, and tag of

to each PL in the title, (ML» Python posls) (ML- JAVA posts

o/

uestions

@L— MATLAB par19 (ML- R posts

Manual

inspection &
labeling

N/

(ML- C++ posts) (ML- C# posts

Used for RQ1, RQ2, & RQ3

Figure 1. Data analysis methodology

II. METHODOLOGY

The goal of our study is to analyze SO posts related
to ML, characterizing them from different perspectives. We
want to understand how the number of such posts evolves
over the years, how this varies among different programming
languages, how posts are distributed across the different ML
phases, the extent to which posts receive a response, and the
time taken to provide these responses. The perspective is
that of educators interested in understanding ML topics that
are challenging to ML developers. They can leverage this
information to improve training materials introducing these
topics. Researchers could also leverage the information, to
develop better tools and analysis techniques to support ML
developers during challenging phases of the development
life cycle of ML systems. The context consists of SO posts
related to ML, dated between 2008 and 2020, and belonging
to different programming languages.

Figure |I| provides an overview of our methodology, de-
scribed in the following.

A. Context and Data Collection

The popularity of SO and its large amount of ML-related
questions, makes it a representative data source for our
study. We consider 43,950 SO questions posted between
July 2008 and December 2020. The first step in our study
is to identify the subset of SO questions that represent the
ML-related challenges. We followed a snowball sampling
approach similar to Alshangiti et al. [7]. We started with
the “machine-learning” tag and extended the list of ML-
related tags based on relevance and co-occurrence. More
specifically, for each tag expanding, we inspected the list of
top 25 tags that occurred with that tag and chose the ones
related to ML. We repeated this process until we obtained
the top 50 most-used ML-related tags (reported in Table [I).

As Table[l| shows, the “machine-learning” tag includes the
greatest number of ML-related questions. Note that this tag
can cover the topic of other ML-related tags as well. We
collected the questions with “machine-learning” tag, using
Stack Exchange Data Explorer, which is an open-source tool

Table I
ToP 50 MOST COMMONLY USED MACHINE LEARNING TAGS

Tag Occur. | Tag Occur.
machine-learning 43,953 | neural-network 17,391
supervised-learning 460 conv-neural-network 6709
unsupervised-learning 541 recurrent-neural-network 2300
reinforcement-learning 1805 rnn 668
prediction 2304 deep-learning 19,804
regression 7522 image-recognition 1287
linear-regression 4966 object-detection 3230
non-linear-regression 570 sentiment-analysis 1629
nls 545 cluster-analysis 5391
classification 6850 hierarchical-clustering 1013
classifier 545 pca 2282
multilabel-classification 670 autoencoder 1155
multiclass-classification 560 word2vec 1865
document-classification 217 word-embedding 811
text-classification 1405 tf-idf 1157
logistic-regression 2995 rfe 113
svm 4270 feature-engineering 296
svmlight 98 feature-selection 1213
decision-tree 2139 feature-extraction 1458
random-forest 2902 cross-validation 2144
naivebayes 950 confusion-matrix 791
perceptron 436 precision-recall 352
dbscan 496 scikit-learn 22015
knn 1409 tensorflow 65,213
k-means 2991 r-caret 1864
Table 11

2008 - 2020 SO ML POSTS WITH MORE THAN THREE STARS PER
LANGUAGE MANUALLY VERIFIED

[Manually-Verified Posts Posts Per
Lang. Nbr. Correct Misclassified Reassigned Lost Language
C# 47 42 5 4 1 42
C/C++ 128 111 17 14 3 114
Matlab 169 153 16 14 2 157
Java 133 119 14 4 10 126
R 320 285 35 26 9 289
Python 3389 3367 22 0 22 3411
Other H 47
Overall 4186 4077 109 62 47 7] 4186

to run queries against public data from the Stack Exchange
network [9].

B. RQI: Post classification across programming languages

Before automatically classifying posts across program-
ming languages, we performed some textual preprocessing.
Since the body of each question may contain source code,
before starting to search for keywords, we preprocessed the

content of the post using regular expressions matching and
removed the content between the <code> and </code>
tags. This preprocessing step is necessary because the code
in the post can contain the searched keywords as the name
of some variables like C and R, therefore introduce false
positives.

To determine the ML posts related to each programming
language, we used the language name as a keyword to
search in the title, question body, and tag of each post
from our initial dataset of ML-related questions. Since some
posts could contain questions related to more than one
programming language, we count such posts in the datasets
of each relevant programming language separately. After
removing the source code, we pruned out HTML tags.

We validated the reliability of such a categorization man-
ually inspecting a subset of them, and, in particular, all
posts having more than three stars, because these posts
will be used for the analyses of RQ2 and RQ3. Results of
this manual analysis are reported in Table [l showing how
many posts were misclassified and how many reassigned.
When a post was reassigned, it was reassigned to a different
language, including the Other language category (i.e., not
one of the analyzed languages), thus the column 7orzal is the
results of manual reassignment and cannot be obtained by
adding the number on the same row.

In our sample of 4186 posts, we found a total of 109 mis-
classifications (about 3%), out of which 62 were manually
re-assigned. The remaining 47 posts were discussing other
programming languages and though not strictly relevant we
kept and are reported as Other.

We then computed the proportion of questions asked for
each programming language, from 2008 to 2020. We also
computed the proportion of accepted questions for each
programming language during the same period. Moreover,
to determine whether there is a trend in the questions for
each programming language, we apply the non-parametric
Mann-Kendall test for trend detection [10], [11]] and the
Sen’s slope statistic [[12]]. Specifically, we first apply the
Mann-Kendall test to reject the null hypothesis Hy : There
is no significant trend in the time series. The Mann-Kendall
test is a measure of association between an increasing time
series, automatically generated, and the observed time series.
It computes the S statistic, which is closely related to the
T correlation, i.e., it is based on the ranks of the samples
and indicates the trend direction, i.e., if positive, the trend
increases (conversely, it decreases). Then, we compute the
Sen’s statistic [[12] to gain an insight of the slope size [12]:
the higher the value, the greater the slope. In a nutshell,
the slope is the median of the deltas between consecutive
points. Being based on the median, Sen’s slope (also known
as Theil-Sen estimator [12]]) is robust to outliers.

Finally, we use the Lanzante statistic [13] which, given a
time series, determines whether it has points in which the
slope significantly changes, and if yes indicates where.

To address RQ1, we report and discuss the post trends
over the years among the different programming languages,
using the aforementioned statistical procedures to identify
the presence of trends.

C. RQ?2: Classification of questions into phases

In this research question, we classify posts according
to the ML phases defined by Amershi et al. [14]. The
analysis has been conducted manually (see Table [l) and,
to consider more representative and high-quality posts, we
consider those having a score greater than three stars (i.e.,
four or five stars). This selection also makes the manual
inspection more feasible. While we are aware that excluding
some (low-rated) posts might somewhat bias our dataset, our
intent is to look at very meaningful (highly-rated) posts that
can be considered as good representatives of the various
phases. Low-rated posts may be useless, trivial, or even
wrong, and may produce a misleading representation of the
post distribution along phases.

Note that such a filtering was not performed to address
RQI1, because, in that case, we were simply interested
to gather an overview of the posts across programming
languages and over the year. We manually inspected 4186
high-rated ML posts to categorize them and consider the
accuracy of the programming language classification.

Two ML researchers independently classified and labeled
100 randomly-selected questions. They were asked to assign
only one label to each question. We computed the Cohen’s
k [15] inter-rater agreement, which resulted equal to 0.88,
which is an almost perfect agreement.

This substantial level of agreement means that the two
researchers shared a common understanding of the posts,
therefore, for the remaining dataset, we divided it into
two groups and tasked each of the researchers to manually
classify one group.

During the manual inspection, each rater performed two
tasks (1) determined the correctness of programming lan-
guage assignment to post (which for RQ1 was only done
on a sample, and (2) by reading the post content, assigned
the post to one or more ML phases as they were defined by
Amershi et al. [14].

Amershi et al. [14] suggest a nine-phase ML workflow
informed by prior experiences developing Al applications
at Microsoft. Some phases are data-oriented like collection,
cleaning, and labeling. But other stages are model-oriented
(e.g., model requirements, feature engineering, training,
evaluation, deployment, and monitoring). We determined our
ML categories based on this workflow to classify and label
the questions. Next, we describe these categories as they
were interpreted by the raters when manually classifying
SO posts:

Model Requirement (MR): The questions under this
category are related to considering the implementation feasi-
bility of features with ML, looking for appropriate libraries,

choosing the most appropriate models for a given problem,
identifying relevant and representative data, and installing
required infrastructure, e.g., packages.

Data Collection & Preprocessing (DCP): All the ques-
tions related to data collection and preprocessing are placed
in this category; integrating datasets, removing inaccurate,
noisy or duplicate records and outliers from the dataset, data
adoption into suitable data format required, data transforma-
tions (like normalization, min-max scaling, and data format
conversion), and balancing the classes.

Feature Processing (FP): This category includes ques-
tions related to data labeling and feature engineering; as-
signing ground truth labels to each record, encoding data,
extracting and selecting informative features to reduce data
dimensionality.

Model Building (MB): The questions under this category
are related to identifying the training and test dataset,
creating the ML model using the APIs, training the model,
tuning the model parameters, storing models to disk, and
loading them to use later.

Model Evaluation (ME): These questions are about
evaluation method selection, evaluating the performance
of a model, visualizing the behavior of the model, and
interpreting the output of a model.

Model Deployment (MD): The questions related to
deploying the application on suitable devices or platforms,
model reuse (like conversion of a model trained using one
library and then using the trained model for prediction in an
environment using another library), getting different results
from one ML model implemented by different platforms
(when using similar setting), and robustness are placed in
this category.

Model Monitoring (MM): This category includes the
questions related to monitoring the functionality of ML
applications for performance and potential errors, during
real-world executions.

Not Related to ML Challenges (NO): This category
includes questions that cannot be placed under any of the
above categories.

All Phases (all): Includes posts related to all ML de-
velopment phases: model requirement, data collection, data
preprocessing, feature processing, model building, model
evaluation, model deployment, and monitoring.

To address RQ2, we report the distribution of the
manually-classified posts along phases, and how this varies
between programming languages.

D. RQ3: Analysis of how posts were answered

To address RQ3 we analyzed, for different programming
languages and for different ML phases, the percentage of
posts that received an accepted answer, and, if this happens,
the distribution of response time (in hours). That is, we
replicate the analysis conducted by Alshangiti et al. [[7]], but

Table III
OVERALL NUMBER OF POSTS PER LANGUAGES
With accepted

Without accepted Total ~ Without accepted

answers answers answers %
C# 150 215 365 59
C/C++ 272 294 566 52
Matlab 589 636 1225 52
Java 622 823 1445 57
R 1074 1616 2690 60
Python 9591 12,663 22,254 57

(i) considering the impact on different programming lan-
guages separately, and (ii) by using the phase classification
taxonomy of Amershi et al. [[14]. As also done for RQ2, and
since posts could not receive an accepted answer because
they are trivial/uninteresting/misleading, we only consider
posts having a score greater than three.

In summary, we report (i) the number and percentage
of posts without confirmed answers (ii) for posts that have
been answered, boxplots depicting their distribution along
programming languages and along ML phases. Also, to
statistically compare different programming languages and
different phases we use the (non-parametric) Dunn’s test [|16]]
using the Benjamini-Hochberg correction [17] because of
multiple comparisons being performed.

III. STUDY RESULTS

This section reports the study results, aimed at addressing
the research questions formulated in Section

A. RQI: How does the number of ML-related posts related
to different programming language change over the years?

Table [I1I] reports the overall number of posts, along with
the number and ratio of accepted ones. As the table shows
Python and R play the lion-share role while others such as
C# and C/C++ have a lower number of posts.

The role of Python is not surprising, given the availability
of many data science-related libraries (e.g., pandas, numpy,
PyTorch, or Scikit-learn) but, more importantly, the hype of
deep learning techniques [18]], and the adoption of related
libraries. In that case, Python represents an almost compul-
sory choice as the support in other programming languages
is relatively limited.

The case of R is also interesting to discuss. R has
a long-term tradition in terms of usage by the scientific
community coupled with a large community of developers
and a consolidated infrastructure (i.e., the CRAN archive).
While nowadays Python libraries such as the ones mentioned
above make available almost any statistical procedure, R
remains popular for researchers who got used to it (espe-
cially working in areas beyond computer science), and is a
valid choice for those having to use very specific statistical
procedures that may not be available in Python yet.

Table [[V] and Figure 2] show the overall evolution of posts
over the years, and its trend per programming language,
respectively. As it is possible to notice from the plots in

Table IV
OVERALL NUMBER OF POSTS OVER THE YEARS PER LANGUAGE WITH AND WITHOUT ACCEPTED ANSWERS

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total
C# 0 5 9 9 22 11 14 22 33 42 65 70 63 365
C/C++ 0 3 14 33 41 48 49 85 88 70 48 40 47 566
Matlab 2 11 24 39 108 157 161 168 183 149 120 54 49 1225
Java 0 6 28 60 112 115 123 171 177 191 136 135 191 1445
R 0 2 12 28 61 119 153 225 438 404 374 360 514 2690
Python 0 4 46 83 170 314 441 819 1855 3330 4366 4423 6403 22,254
Ci#t C/C++
600 - 600 -
m Status o Status
g 4001 — Accepted g 4001 — Accepted
a a
200- -+ Total 200- - Total
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year Year
Java Matlab
600 - 600 -
” Status ” Status
g 4001 — Accepted g 4001 — Accepted
a a
200- UCTSPRRS e . -+ Total 200~ e - Total
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year Year
R Python
600 - 6000 - o
" . Status - Iz Status
g 4001 A woseeet — Accepted g 4000 . — Accepted
a a

-+ Total

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

2000~ -+ Total

0-
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Figure 2. Evolution of total and accepted posts over the years. Note: Python has a different scale.

Figure [2] there is a consistent trend within two groups of
programming languages. On the one hand, we have Java,
R, and Python where we can clearly notice an increasing
trend. On the other hand C#, C/C++ and Matlab have either
a lower increasing trend (if any) or even a decrease (Matlab).
It is unclear why this happens, although the only difference
between Matlab and the other languages is that the former
is part of a commercial product (by MathWorks), although
Matlab-like (e.g., GNU Octave) open source solutions exist.
However, it may also be the case that Matlab targets a
different category of developers, e.g., including industrial
developers working in automation control and especially in
the automotive domain, where the adoption of ML solutions
is rapidly increasing especially to support self-driving or
driving assistance features. One possible explanation is that,
in the context of industrial projects, developers may target
internal sources of knowledge rather than SO.

Consistently to what we observed in terms of the number
of posts, Python and R have a consistent and steeper
increase, plus they do not exhibit a plateau (nor a decrease)
in the last two/three years.

We confirmed this observation by applying the Mann-

Table V
OVERALL POSTS MANN-KENDALL TREND TEST - Hp : SLOPE=0

Language p-value S VarS T
C# <e-04 68 266 0.88
C/C++ 0.02 39 267 0.50
Matlab 0.07 30 268 0.38
Java 0.0001 63 267 0.81
R <e-4 66 268 0.85
Python <e-05 78 268 1
Table VI

OVERALL POSTS TREND ANALYSIS: SEN’S SLOPE

Language p-value Slope
C# < e-04 5.50
C/C++ 0.02 5.41
Matlab 0.07 10.0
Java 0.0001 16.28
R < e-04 42.77
Python < e05 45552

Kendall Test to determine whether our time series dataset
has an increasing or decreasing trend. We also applied the
Sen’s slope statistics [[10]-[12] to estimate the slope of the
trends. The results of these analysis are reported in Table
and Table respectively. As for the Mann-Kendall test,

Table VII
2014 ON: TREND ANALYSIS: SEN’S SLOPE

Language p-value Slope
C# 0.02 9.5
C/C++ 0.13 -7.6
Matlab 0.03 -23.8
Java 0.44 3.5
R 0.2 49.66
Python 0.002 1018.5

Table [V]reports the test p-value, the S statistics (the higher S,
the steeper the trend is expected), the S variance (VarS), and
the 7 coefficient. Table reports the Sen’s trend analysis
p-value and slope.

The Mann-Kendall test confirms the presence of trends for
all languages but Matlab. Sen’s slopes vary evenly between
the minimum of about five (for C# and C/C++) and the
maximum of about 450 for Python.

Finally, we applied the Lanzante statistics [13]] to further
confirm the presence of a trend and divide the likely point
of change. Lanzante statistics identified two possible change
points in 2012 and 2015. Also in this case, languages can be
broadly divided into two groups. On the one hand, C/C++
and Matlab have a change point in 2012, while the other
languages exhibit a change point in 2015. The latter has a
very clear explanation, i.e., the introduction of very popular
frameworks for deep learning, such as TensorFlow and Keras
(both released in 2015) or PyTorch, released in 2016. Indeed,
if we consider two sub-series up to 2014 and from 2014 on,
we obtain the trend analysis results shown in Table
where only Python is increasing.

Results show an increasing trend for Java, R, and
Python, with the latter having the steepest increase.
The rapid increase of Python posts in 2015-2016 and
the delta in 2019-2020 may be explained by the surge
of Python frameworks, as well as by the increasing
adoption of ML in research and practice.

B. RQ2: How are posts distributed across different phases
of a ML pipeline, and how does this change over time?

Table reports the distribution of posts (among the
manually analyzed ones) for the ML various phases defined
by Amershi et al. [14]], and Table the percentage of SO
posts per phases and language. Note that since a post may
belong to multiple categories, the sum of percentages does
not add up to 100.

Looking at Table the difference in terms of relative
importance of phases is evident. The majority of questions in
our dataset are related to model building (MB), model eval-
uation (ME), and model deployment (MD) phases. Model
requirement (MR) seems to be a concern for C# and C/C++
(because many C# and C/C++ developers are looking for
the equivalent of Python libraries in these languages), while

data collection (DC) and feature processing (FP) posts are
frequent in C#. We can conclude that MB, ME, and MD are
the main sources of concerns.

Table [X]reports the Python distribution of posts per phase
and years. Similar tables for other languages are omitted due
to space reasons. Given the conclusion of RQ1, Python is
indeed the most interesting language to consider for an in-
depth discussion. Table [X]shows an almost steady increase
for MB, MD, and ME posts. Moreover, MB, ME, and MR
account for about 50% and more of concerns, and this
throughout the years. Overall, for the other programming
languages, we observed similar trends.

Table [XT] reports links to examples belonging to different
phases.

MR posts address a variety of specific topics related to
model requirements. Post P1 asks: There is an infinite stream
of 4 possible events. What ML algorithm is the best to
predict what the next event will be, based on the order
that events have come in in the past? And how long of
a history that the predictor should maintain? And if more
than one event can happen simultaneously on each round,
does that change the solution? Python or C libraries are
nice, but anything will do. The developer was not sure
what ML tool fits such a prediction problem regardless of
the language. Also, adapting to more complex learning and
improving it performance could be an issue, e.g., the P2
issue Recently I've been reading a lot about Q-learning with
Neural Networks and thought about updating an existing
old optimization system in a power plant boiler composed
of a simple feed-forward neural network approximating
an output from many sensory inputs. As another example
for C#, the post P3 is asking I'm trying to tackle the
classic handwritten digit recognition problem with a feed
forward neural network and backpropagation, using the
MNIST dataset...I finished writing it some time ago and
been debugging since, because the results are quite bad.
At its best the network can recognize 4000/10,000 samples
after 1 epoch and that number only drops on the following
epochs, which lead me to believe there’s some issue with the
backpropagation algorithm. Here, in the end, the problem
was not of a better algorithm, but rather, an input rescaling
problem, thus more a matter of pre-processing.

Data collection, pre-processing and feature processing are
a concern too. Consider post P6, where the problem was a
missing rescaling of the inputs, causing the Deep Neural
Network to produce inconsistent results. Similarly, P5, P7
and P8 cope with re-shaping, rescaling, and feature space
reduction.

In summary, developers asking questions are concerned
about ML algorithm and their implementation, given the
problem requirements at hand. Since languages such as
C, C++, or C# where MR questions occur more (in per-
centage) are not languages specifically targeting ML or
statistics (as instead R, Matlab, and also Python thanks to its

Table VIII
PERCENTAGE OF ML POSTS (WITH MORE THAN THREE STARS) PER PHASE AND LANGUAGES

MR DCP FP MB ME MD MM NO ALL Unclear
C# 26 29 3 43 - 3 - 3 15 -
C/C++ 33 10 3 38 7 24 - 8 - -
Matlab 13 11 6 66 10 3 - 6 2 -
Java 1 12 7 48 3 27 2 4 6 2
R 10 15 8 46 22 13 2 4 1 -
Python 19 13 18 47 33 12 2 5 1 5
Other 5 7 3 19 - 12 - 10 - 55

Table IX

DISTRIBUTION OF PHASES OF ML POSTS WITH MORE THAN THREE STARS FOR DIFFERENT LANGUAGES

MR DCP FP MB ME MD MM No all Unclear | Total
C# 9 10 1 15 0 1 0 1 5 0 42
C/C++ 31 9 2 36 6 23 0 7 0 0 114
Matlab 17 15 8 90 13 4 0 8 2 0 157
Java 1 13 8 56 3 31 2 4 6 2 126
R 23 35 19 114 54 30 4 8 2 0 289
Python 429 291 384 1046 734 270 39 108 1 109 | 3411
Other 2 3 1 8 0 5 0 4 0 24 47
Overall 512 376 423 1365 810 364 45 140 16 135 [4186

Table X

PYTHON NUMBER OF POSTS (WITH MORE THAN THREE STARS) PER PHASE AND OVER THE YEARS

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | Total
MR 0 3 17 30 26 40 28 44 74 65 55 28 19 429
DCP 0 0 7 4 6 15 18 32 44 65 60 26 14 291
FP 0 0 3 4 8 26 28 40 67 88 72 33 15 384
MB 0 0 12 15 34 50 42 86 186 242 231 105 43 | 1046
ME 0 0 6 9 27 36 37 56 156 171 144 72 20 734
MD 0 0 1 3 9 13 11 25 46 52 65 36 9 270
MM 0 1 1 1 1 4 3 1 5 8 4 7 3 39
NO 0 0 2 1 6 4 2 6 24 28 18 14 3 108
ALL 0 0 0 0 0 1 0 0 0 0 0 0 0 1
Unclear 0 0 1 5 4 3 8 8 20 30 13 14 3 109
Overall 0 4 50 72 121 192 177 298 622 749 662 335 129 | 3411

frameworks), such questions likely originate from developers
working on a domain-specific application, which need to
use ML but do not have specific ML-related expertise.
Indeed, languages like C, C++ are used, for example, in
the development of embedded systems or Internet-of-Things
(IoT) applications, where ML may find a meaningful usage.
Other areas of application include video games, where C++
and C# are used as languages.

MB questions vary from very specific questions, for
example, P9:What is the parameter “max_gq_size” used for
in “model.fit_generator”, related to the evaluation of deep
learning models in Python, to more implementation-oriented
issues, e.g., P10 While tuning the hyperparameters to get my
model to perform better, I noticed that the score I get (and
hence the model that is created) is different every time I run
the code despite fixing all the seeds for random operations.
This problem does not happen if I run on CPU and e.g., P11
for Matlab: I am using gradient descent to minimize the cost
function to implement Logistic Regression. I wrote a function
in Matlab that returns both the cost and the gradient of

each parameter evaluated at the current set of parameters.
My cost function works, but the gradient function does not.
What’s wrong? Finally, P12 concerns with language-specific
issues occurring when porting Deep Neural Networks on
Android. We conjecture that MB questions like the ones
discussed exhibit an increase also considering the growing
adoption of deep learning algorithms. ME is also an often
encountered concern. Consider the Python posts P13 and
P14: ... I have a working network that is training, but the
minibatch loss is at about 425 right now and the accuracy
at 0.0, and for the LSTM MNIST example code (linked)
the minibatch loss was about 0.1 and the accuracy about
1.0. My hope is that if I can change the activation function
to use the SoftMax function, I can improve results... and
After using “sklearn.linear_model.LogisticRegression” to fit
a training data set, I would like to obtain the value of the
cost function for the training data set and a cross validation
data set.” How can I evaluate cost function for scikit
learn LogisticRegression? Similar doubts about evaluation
are raised with other languages, e.g., a Java developer asked

Table XI
EXAMPLES OF SO POSTS FOR DIFFERENT PHASES

Phase = Language Link

P1: https://stackoverflow.com/questions/2524608/machine-learning-algorithm-for-predicting-order-of-events

MR Python P2: https://stackoverflow.com/questions/40158232/updating-an-old-system-to-q-learning-with-neural-networks
C# P3: https://stackoverflow.com/questions/56365587/backpropagation-algorithm-giving-bad-results
DCP Python P5: https://stackoverflow.com/questions/52184142/keras-sequential-dense-input-layer-and-mnist-why-do-images-need-to-be-reshape
R P6: https://stackoverflow.com/questions/9316794/am-i-using-the-wrong-data-type-with-predict-nnet-in-r
FP Python P7: https://stackoverflow.com/questions/28254824/feature-space-reduction-for-tag-prediction
Matlab P8: https://stackoverflow.com/questions/40560139/matlab-feature-selection
Python P9: https://stackoverflow.com/questions/36986815/what-is-the-parameter-max-q-size-used-for-in-model-fit-generator
MB P10: https://stackoverflow.com/questions/50744565/how-to-handle-non-determinism-when-training-on-a-gpu
Matlab PI1: https://stackoverflow.com/questions/38853370/matlab-regularized-logistic-regression-how-to-compute-gradient
Java P12:https://stackoverflow.com/questions/3891047 1/tensorflow-retrained-inception-v3-model-crashes-on-android
Python P13: https://stackoverflow.com/questions/37796595/tensorflow-Istm-rnn-output-activation-function
ME P14: https://stackoverflow.com/questions/35956902/how-to-evaluate-cost-function-for-scikit-learn-logisticregression
Java P15: https://stackoverflow.com/questions/21674522/get-prediction-percentage-in-weka-using-own-java-code-and-a-model
MD Python P16: https://stackoverflow.com/questions/42945509/keras-input-shape-valueerror

P17: https://stackoverflow.com/questions/34175174/extract-features-using-pre-trained-tensorflow-cnn

How can I get prediction percentage in Weka using my own
Java code and a model? (P15).

We observed that model deployment (MD) touches a large
variety of issues from operating systems to the availability of
pre-trained models. In P16 the concern is an error due to the
use of 32 versus 64 bits software I made an image classifier
with Keras using Theano as a Backend and a Sequential
model. When I run my script on Windows 7 32 Bit, I get
an error but If I run it on Elementary OS 64 Bit, it runs
without any problem. Is there such a big difference between
different Operating Systems? , while in P17 the concern is
the availability of a model ready to be deployed when one
does not have enough data to train the CNN, I may expect
this to outperform a pipeline where the CNN was trained on
few samples. I couldn’t find a pickle file (or similar) with a
pre-configured CNN feature extractor. Do such pre-trained
networks exist and where can I find them. Where could 1
find a CNN+weights.

Model requirement, building, evaluation, and de-
ployment are the most frequently encountered con-
cerns. Model building and evaluation challenges for
Python started decreasing after 2018 that may be
because of emerging new frameworks like Keras that
facilitate ML development.

C. RQ3: To what extent are posts belonging to different
languages and different phases answered and after how
long?

As shown in the last column of Table [l the ratio of
posts without accepted answers for all languages is between
52% and 60%. If we consider the sample of posts with more
than three stars, as shown in the last column of Table [X1I]
such a percentage lowers between 21% and 41%, with a
noticeable exception (Java) of only 4%. It must be noted that
the number of such posts considered for Java is relatively
small (126, as from Table [IX)), all highly-rated posts may
get accepted. Confirming the findings of RQ1 (where we

have observed an increase of Python and R posts), R and
Python have higher percentages of not accepted posts than
other languages. This is also the case for C# which, however,
similarly to Java, has a very small number of high-rated posts
(42 as from Table [IX)). While there could be many reasons
for such observation, it is possible that the greater adoption
of Python and R for ML generates more questions, but
also more controversial answers. Languages such as Matlab
and C/C++, which are more specialized and tied to specific
usages and needs in the context of ML (e.g., speed, see for
instance the Darknet projecﬂ) or the need to integrate into
simulation engines (e.g., Matlab).

When looking at the distribution across phases, RQ2
findings are confirmed also in terms of “controversial” posts
that received no answers. First, we can see a relatively high
percentage of posts with no accepted answers for MR, but
also (confirming results of Alshangiti et al. [[7]) for DCP
which is however lower for Python than for C#, C/C++,
and R. This can be explained because Python has, with
respect to those languages (including also R), much more
data parsing/cleaning facilities thanks to the wide availability
of libraries. Interestingly, this also happens for FP, MB, and
ME, despite R has a quite variety of facilities for feature
processing, and model building, and to some extent for
model evaluation. However, the availability in Python of
recent frameworks, including PyTorch, Scikit-learn, or Keras
makes the life of ML developers easier.

MD seems to be less of a concern for Matlab and R.
For the former, as previously discussed the language is
quite mature in fields related to automation, and therefore
deployment mechanisms may be clear. Also, often Matlab
source code is translated into C before being deployed,
therefore challenges arise (as it can be seen in the table) for
that language instead. R is more used for experimentation
than for production, and this could explain a relatively
lower percentage of unaccepted questions there. Finally, MM
does not seem to be an issue. There could be a variety of

Uhttps://pjreddie.com/darknet/

https://pjreddie.com/darknet/

Table XII
PERCENTAGE OF ML POSTS (WITH MORE THAN THREE STARS) WITH NO ACCEPTED ANSWER PER PHASE AND LANGUAGES

MR DCP FP MB ME MD MM NO ALL Unclear | Overall
C# 45 40 100 27 - 100 - 0 0 - 34
C/C++ 42 34 0 42 17 44 - 43 - - 40
Matlab 30 27 13 16 24 26 - 38 50 - 21
Java 0 16 0 2 0 4 0 0 0 0 4
R 40 46 37 44 47 30 0 13 50 - 41
Python 37 23 26 30 31 36 16 38 100 41 31
Other 100 34 100 50 - 40 - 26 - 34 41

300 -

Response time [h]

100 -

48

14 14

CIC++ c Java Matlab Python R
Language

Figure 3. Distribution of post response time by language.

300~ + * 1 H

s mmme weecim oe e o

Response time [h]

:]
100- i H

3
!
A

~ .
.
16
: 3| SR EE] | K
0. — .y S — = —
AlL ocP P GR M8 MD

ME MM MR
Phase

Figure 4. Distribution of post response time by phase.

explanations, including the fact that ML is not applied yet
in contexts where monitoring is a crucial concern.

Figure [3] depicts boxplots (positive outliers truncated to
ease readability) showing the distribution of response times
(in hours) for ML posts related to different programming
languages. A Dunn’s test with Benjamini-Hochberg correc-
tion indicates that Python has the shortest response time than
other languages, with a statistically significant difference (p-
value< 0.05) with all other languages but Matlab. This,
unsurprisingly, confirms the high popularity of Python for
ML, and consequently the availability of developers able

and willing to quickly provide answers on SO.

Figure shows, instead, boxplots related to response times
related to different phases. Results indicate that posts related
to data collection and processing (DCP), feature processing
(FP), and those related to all phases (ALL) have significantly
shorter response time (Dunn’s test p-value< 0.05) than
others. DCP and FP are less specific to the technicality of
ML algorithms, therefore they are likely to receive attention
also from non-experts, but just people knowledgeable about
how to extract and clean data from given sources, as well
as from domain experts. Model Monitoring (MM) is, for
example, a very specific feature which not all ML developers
may take care of, therefore the reaction time appears to be
longer.

r

Model requirements, data collection/processing, and
model building are the phases generating more ques-
tions without accepted answers than others. Python
has, in general, fewer questions without accepted an-
swers than R. Generic questions, and those related to
data collection and processing or feature processing
are answered faster than others.

IV. THREATS TO VALIDITY

Threats to construct validity concern the relationship
between theory and observation. These are mainly related
to imprecision in our measurements. Querying SO for
“machine learning” posts may miss relevant posts. Also,
the programming language classification can be error-prone.
This threat has been mitigated in RQ1 by manually ana-
lyzing a sample of posts having a high rate, as well as
manually checking all data for RQ2. Also, the classification
for RQ2 can be subjective and error-prone. We mitigated this
threat by having two raters separately assessing a sample
of 100 posts before completing the task independently, and
computing their Cohen k inter-rater agreement. Finally, the
number of SO posts is only a proxy of the developer base,
but it may rather represent a technology’s popularity among
developers.

Threats to internal validity concern factors internal to
our study that can influence our results. While we discuss
possible reasons for the trends of ML questions among
programming languages (RQ1) and phases (RQ2), these

are only possible interpretations, and there might be other
reasons why such trends occur.

As for RQ3, while previous work has used the extent
to which questions were answered and the time needed to
answer a question as indicators of “challenging” questions
[7], we cannot really claim a causal-effect relationship
between them. This is because there might be many other
reasons why a question receives (or does not get) answers,
and why a question is answered immediately or after a long
time. To partially (mitigate) this threat in RQ3, we consider
posts having a high score, which at least are less likely
to receive low attention because they are not considered
particularly interesting nor relevant by developers.

Threats to external validity concern the generalizability of
our findings. Since our study focuses only on SO posts, re-
sults are limited only to the challenges that some developers
state on SO. Developers may use other specific forums, as
well as internal mailing lists of their projects/organizations.
To generalize the results of our study, additional studies on
other sources should be conducted. Also, while we analyzed
popular programming languages, including the most widely
used language for ML (Python) and languages used for
scientific software (Matlab and R), we may have excluded
interesting discussions related to other languages.

V. RELATED WORK

Amershi et al. [14] studied ML development activities
in Microsoft projects, classifying, as we have discussed in
section ML development into nine phases. Based on
the analysis conducted, Amershi et al. also distilled some
best practices for ML development. We take inspiration
from Amershi et al. work, as we study how SO posts are
distributed along ML phases, and how this varies over the
years and across programming languages.

Mostly related to ours is the work of Alshangiti et al.
[7]. They studied the extent to which ML posts on SO are
challenging to be answered, by considering the proportion
of unanswered posts among six phases of a ML process.
Complementary to Alshangiti et al., we look at the ML-
related posts on SO also from the perspective of considering
different programming languages, trends over the years, and
using a phase classification proposed by Amershi et al. [[14].

Islam et al. [5] conducted a manual inspection on 3,243
highly-rated SO posts related to ten ML libraries and classify
these questions into seven typical categories of an ML
pipeline to determine the correlation between the library
and the phase. However, Islam et al. only study posts
related to some ML libraries, therefore their results cannot
be generalized to the whole body of ML challenges. In
our study, we look at ML posts related to six different
programming languages.

Bangash et al. [19] studied SO posts about ML to under-
stand which ML topics are significantly more discussed than
others. To this aim, they applied Latent Dirichlet Allocation

(LDA) [20] on the textual content of SO posts to categorize
them. Our work differs from Bangash et al., because we
fully rely on a manual analysis to classify posts into ML
phases.

Other studies analyzed interests and challenges of big data
developers [21], the refactoring of ML-intensive systems
[22], ML API misuses [23], and the root causes of ML-
framework bugs [24]-[26].

Patel et al. [27]], [28] conducted an early study on the
difficulties faced by software developers in the adoption
of ML techniques. Yang et al. [29] interviewed non-expert
ML developers to understand the challenges they encounter
when developing ML applications. This study shows that the
most important challenges are related to model performance
issues, unexpected errors, and the understanding of ML
algorithms. With respect to the aforementioned interview-
based studies, our analysis focuses on a different data source,
i.e., SO posts. Also, our analysis specifically deals with
(i) the comparison of different programming languages,
(ii) the classification of posts into phases, and (iii) the
extent to which posts belonging to different phases and
languages are answered or not, as well as the time required
to receive an answer. That being said, the results of our study
indirectly highlight challenges that developers are facing
with ML for different languages and different phases. Also,
the measurements of RQ3 are, similarly to Alshangiti et al.
[7], a proxy of the extent to which posts are challenging to
be answered.

VI. CONCLUSION

In this paper, we report the results of an empirical
study that examined the characteristics of questions asked
by developers about machine learning (ML) development.
Through a quantitative and qualitative analysis of Stack
Overflow posts from 2008 to 2020, and related to ML, we
observe that the number of ML-related posts has changed
over time for different programming languages. More specif-
ically, there is an increasing number of posts related to
machine learning development, especially for Java, R, and
Python. The majority of highly-rated ML-related questions
concern issues related to model requirement, model building,
and evaluation. Model building alone accounts for about
one-third of all the studied posts. Questions about ML
development in Python are usually answered much faster
than questions related to ML development using other
programming languages. This is not surprising given the
current popularity of Python language in the ML community.
However, given the important amount of questions asked by
developers about ML development using other programming
languages, educators and tool creators should ensure that
enough training resources and tool support are available to
support ML development using languages other than Python.
Our data and results are available at an online Appendix [30]]
to ensure our findings’ reproducibility.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

REFERENCES

New Vantage Partners (NVP), Big data and Al
executive survey 2019: How big data and Al are
accelerating business transformation, 2019. [Online].
Available: http://newvantage.com/wp-content/uploads/2018/
12/Big-Data-Executive-Survey-2019-Findings- 122718.pdf

D. Sculley, T. Phillips, D. Ebner, V. Chaudhary, and
M. Young, Machine learning: The high-interest credit card
of technical debt, 2014.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and
D. Dennison, “Hidden technical debt in machine learning
systems,” in NIPS’15: Proceedings of the 28th International
Conference on Neural Information Processing Systems,
December 2015, pp. 2503-2511. [Online]. Available: https:
//dl.acm.org/do1/10.5555/2969442.2969519

E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley,
“What’s your ML Test Score? a rubric for ML production
systems,” in Reliable Machine Learning in the Wild - 30th
Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, 2016, pp. 1-5. [Online]. Available:
https://research.google/pubs/pub45742/

M. J. Islam, H. A. Nguyen, R. Pan, and H. Rajan, “What Do
Developers Ask About ML Libraries? A Large-scale Study
Using Stack Overflow,” in arXiv:1906.11940v1, 2019, pp.
1-13. [Online]. Available: https://arxiv.org/abs/1906.11940

A. Joorabchi, M. English, and A. E. Mahdi, “Text min-
ing stackoverflow: Towards an Insight into Challenges and
Subject-Related Difficulties Faced by Computer Science
Learners,” Journal of Enterprise Information Management,
vol. 29, no. 2, pp. 255-275, 2016.

M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu,
and Q. Yu, “Why is developing machine learning applica-
tions challenging? a study on stack overflow posts,” 2019
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 1-11, 19-20
September 2019.

A. Mclntosh, S. Hassan, and A. Hindle, “What can android
mobile app developers do about the energy consumption of
machine learning?” Empirical Software Engineering, vol. 24,
pp. 562-601, 2018.

J. Atwood, Introducing Stack Exchange Data Explorer,
2010. [Online]. Available: https://stackoverflow.blog/2010/
06/13/introducing-stack-exchange-data-explorer/

K. W. Hipel, Time series modelling of water resources and
environmental systems. Elsevier Amsterdam; New York,
1994.

C. Libiseller and A. Grimvall, “Performance of partial
mann—kendall tests for trend detection in the presence
of covariates,” Environmetrics, vol. 13, no. 1, pp. 71-84.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/env.507

P. K. Sen, “Estimates of the Regression Coefficient Based on
Kendall’s Tau,” Journal of the American Statistical Associa-
tion, vol. 63, p. 1379-1389, 2012.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

J. Lanzante, “Resistant, robust and non-parametric techniques
for the analysis of climate data: Theory and examples, in-
cluding applications to historical radiosonde station data,”
International Journal of Climatology, vol. 16, pp. 1197-1226,
1996.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar,
N. Nagappan, B. Nushi, and T. Zimmermann, “Software
Engineering for Machine Learning: A Case Study,” in
2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP),
Montreal, Canada, 25-31 May 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8804457

J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and psychological measurement, vol. 20, no. 1,
pp. 37-46, 1960.

O. J. Dunn, “Multiple Comparisons among Means,” Journal
of the American Statistical Association, vol. 56, no. 293, pp.
52-64, 1961.

Y. Benjamini and Y. Hochberg, “Controlling the False Dis-
covery Rate: A Practical and Powerful Approach to Multiple
Testing,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 57, no. 1, pp. 289-300, 1995.

Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436-444, 2015.

A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong,
A. Hindle, and K. Ali, “What do developers know
about machine learning:a study of ML discussions on
StackOverflow,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR),
Montreal, Canada, 25-31 May 2019, pp. 260-264. [Online].
Available: https://ieeexplore.ieee.org/document/8816808

D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3,
pp- 993-1022, 2003.

M. Bagherzadeh and R. Khatchadourian, “Going big: A large-
scale study on what big data developers ask,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 432-442. [Online].
Available: https://dl.acm.org/doi/10.1145/3338906.3338939

Y. Tang, R. Khatchadourian, M. Bagherzadeh, R. Singh,
A. Stewart, and A. Raja, “An empirical study of refactorings
and technical debt in Machine Learning systems,” in
2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), Madrid, Spain, 22-30 May 2021,
pp. 238-250. [Online]. Available: https://ieeexplore.ieee.org/
document/9401990

T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and
M. Kim, “Are code examples on an online q&a forum
reliable?: a study of api misuse on stack overflow,” in /CSE
’18: Proceedings of the 40th International Conference on
Software Engineering, May 2018, pp. 886-896. [Online].
Available: https://dl.acm.org/doi/10.1145/3180155.3180260

http://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-122718.pdf
http://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-122718.pdf
https://dl.acm.org/doi/10.5555/2969442.2969519
https://dl.acm.org/doi/10.5555/2969442.2969519
https://research.google/pubs/pub45742/
https://arxiv.org/abs/1906.11940
https://stackoverflow.blog/2010/06/13/introducing-stack-exchange-data-explorer/
https://stackoverflow.blog/2010/06/13/introducing-stack-exchange-data-explorer/
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.507
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.507
https://ieeexplore.ieee.org/document/8804457
https://ieeexplore.ieee.org/document/8816808
https://dl.acm.org/doi/10.1145/3338906.3338939
https://ieeexplore.ieee.org/document/9401990
https://ieeexplore.ieee.org/document/9401990
https://dl.acm.org/doi/10.1145/3180155.3180260

[24]

[25]

[26]

(27]

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang,
“An empirical study on TensorFlow program bugs,” in
In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2018),
New York, USA, July 2018, pp. 129-140. [Online].
Available: |https://dl.acm.org/doi/10.1145/3213846.3213866

M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A
comprehensive study on deep learning bug characteristics,”
in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, New York,

USA, August 2019, pp. 510-520. [Online]. Available:
https://dl.acm.org/doi/10.1145/3338906.3338955
M. J. Islam, R. Pan, , G. Nguyen, and H. Rajan,

“Repairing Deep Neural Networks: Fix Patterns and
Challenges,” in ICSE °'20: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
June 2020, pp. 1135-1146. [Online]. Available: https:
//dl.acm.org/do1/10.1145/33777811.3380378

K. Patel, J. A. Fogarty, J. A. Landay, and B. L. Harrison,
“Investigating statistical machine learning as a tool for

(28]

[29]

(30]

software development,” in CHI ’08: Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, April 2008, p. 667-676. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/1357054.1357160

K. Patel, J. A. Fogarty, J. A. Landay, and B. Harrison,
“Investigating statistical machine learning as a tool for
software development,” in Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, July 2008, p.
1563-1566. [Online]. Available: https://dl.acm.org/doi/10.
5555/1620270.1620333

Q. Yang, J. Suh, N. Chen, and G. A. Ramos, “Grounding
Interactive Machine Learning Tool Design in How Non-
Experts Actually Build Models,” in DIS ’18: Proceedings
of the 2018 Designing Interactive Systems Conference, June
2018, pp. 573-584. [Online]. Available: https://dl.acm.org/
doi/10.1145/3196709.3196729

A. Hamidi, G. Antoniol, F. Khomh, M. Di Penta, and
M. Hamidi. Towards understanding developers’ machine-
learning challenges: A multi-language study on stack
overflow — replication package. [Online]. Available: https:
//github.com/plmlichallenges/ml-pl-challenges

https://dl.acm.org/doi/10.1145/3213846.3213866
https://dl.acm.org/doi/10.1145/3338906.3338955
https://dl.acm.org/doi/10.1145/3377811.3380378
https://dl.acm.org/doi/10.1145/3377811.3380378
https://dl.acm.org/doi/abs/10.1145/1357054.1357160
https://dl.acm.org/doi/10.5555/1620270.1620333
https://dl.acm.org/doi/10.5555/1620270.1620333
https://dl.acm.org/doi/10.1145/3196709.3196729
https://dl.acm.org/doi/10.1145/3196709.3196729
https://github.com/plmlchallenges/ml-pl-challenges
https://github.com/plmlchallenges/ml-pl-challenges

	Introduction
	Methodology
	Context and Data Collection
	RQ1: Post classification across programming languages
	RQ2: Classification of questions into phases
	RQ3: Analysis of how posts were answered

	Study Results
	RQ1: How does the number of ML-related posts related to different programming language change over the years?
	RQ2: How are posts distributed across different phases of a ML pipeline, and how does this change over time?
	RQ3: To what extent are posts belonging to different languages and different phases answered and after how long?

	Threats to Validity
	Related Work
	Conclusion
	References

