
Problems and Solutions in Applying Continuous Integration and
Delivery to 20 Open-Source Cyber-Physical Systems
Fiorella Zampetti

University of Sannio

Benevento, Italy

fzampetti@unisannio.it

Vittoria Nardone

University of Sannio

Benevento, Italy

vnardone@unisannio.it

Massimiliano Di Penta

University of Sannio

Benevento, Italy

dipenta@unisannio.it

ABSTRACT

Continuous integration and delivery (CI/CD) have been shown to

be very useful to improve the quality of software products (e.g., in-

creasing their reliability or maintainability), and their development

processes, e.g., by shortening release cycles. Applying CI/CD in the

context of Cyber-Physical Systems (CPSs) can be particularly im-

portant, given that many of those systems can have safety-critical

properties, and given their interaction with hardware or simulators

during the development phase. This paper empirically analyzes

how CI/CD is enacted in CPSs when considering the context of

open-source projects, that often (also) rely on hosted CI/CD so-

lutions, and benefit of an open-source development community.

We qualitatively analyze a statistically significant sample of 670

pull requests from 20 open-source CPSs hosted on GitHub, to iden-

tify and categorize—also keeping into account catalogs from previ-

ous literature—bad practices, challenges, mitigation, and restruc-

turing actions. The study reports and discusses the relationships

we found between bad practices/challenges and CI/CD restructur-

ing/mitigation strategies, reporting concrete examples, especially

those emerging from the intrinsic complexity of CPSs.

CCS CONCEPTS

• Software and its engineering→ Software development pro-

cess management; • Computer systems organization → Em-
bedded and cyber-physical systems.

KEYWORDS

Cyber-Physical Systems, Continuous Integration and Delivery, Pull

Requests

ACM Reference Format:

Fiorella Zampetti, Vittoria Nardone, and Massimiliano Di Penta. 2018. Prob-

lems and Solutions in Applying Continuous Integration and Delivery to 20

Open-Source Cyber-Physical Systems. In Proceedings of MSR ’22: Proceedings
of the 19th International Conference on Mining Software Repositories (MSR
2022). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/1122445.

1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Cyber-Physical Systems (CPSs) are composed of heterogeneous

software and hardware units. A peculiar characteristic of CPSs

is that they receive inputs from hardware components, e.g., from

sensors, and, in turn, send their output to other pieces of hardware,

e.g., actuators.

Performing a continuous quality assurance for CPSs can be par-

ticularly important, even more than for conventional systems, for

several reasons. First of all, CPSs are intrinsically complex, because

of the interaction of software components with heterogeneous

hardware devices [23, 39]. Second, determining a testing scenario

for those systems may imply simulating/mocking “in vitro” the

environment [14] in which the system operates, e.g., think about a

drone reading inputs from a camera in different weather conditions,

reading GPS positions, and controlling rotors to move the vehicle

in a given environment.

Setting up a Continuous Integration and Delivery (CI/CD)

pipeline to support CPS development could be particularly use-

ful, as it has already been shown for conventional software systems,

not only for improving quality assurance but also for reducing

development cycles [10, 24, 40, 48].

In industry, CPSs are often developed in closed environments,

where, for example, the CI/CD service has access to HiL (Hard-

ware in the Loop) and simulators. At the same time, there has been

active development of open-source CPSs, in various domains, rang-

ing from unmanned aerial vehicles to self-driving cars, robotics, or

home automation. For these systems, enabling a CI/CD process may

require circumventing several challenges, related to the complex

and heterogeneous environment, to the extent to which testing ac-

tivities can be fully automated, as well as to the need for interfacing

the system with simulators and HiL.

Similarly to previous studies aimed at identifying software de-

velopment practices by looking at pull requests’ (PRs) discus-

sions [6, 7, 13, 22, 32, 33, 42] we qualitatively analyze PRs to study

how developers discuss challenges concerning the application of

CI/CD for CPSs and strategies to overcome them.

The goal of this paper is to investigate challenges and bad prac-

tices faced when applying CI/CD in the development of CPS open-

source projects, as well as specific solutions to the encountered

problems. The study has been conducted by performing a qualita-

tive analysis of a statistically significant sample of 670 PRs from

20 open-source projects. The selected open-source projects have

topics matching some CPS-related keywords, use at least one CI/CD

service, meet specific criteria in terms of the number of commits,

PRs, contributors, and are written in C/C++, i.e., the most used

languages for CPSs development [36]. Note that we preferred to

perform the analysis on a relatively limited set of projects (20),

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

because this allows us to consider a relatively high number of PRs

for each project.

After projects’ selection, we identified PRs modifying CI/CD

pipelines, building automation scripts, or simulators and/or HiL

configurations. Finally, through a hybrid, cooperative card sorting

procedure [37], the sample of 670 PRs has been classified in terms of

CI/CD bad practices and restructuring actions, as well as challenges

and their mitigation.

On the one hand, the study results confirm existing bad practices

occurring when setting/evolving CI/CD pipelines for conventional

systems, even if some existing problems are exacerbated due to the

intrinsic complexity of CPSs. On the other hand, new challenges

and related mitigation come up from the study. Specifically, even

within a single domain, a CPS must be able to run/be interfaced

with multiple/diverse hardware implying “ad-hoc” CI/CD pipeline

configurations, e.g., through build matrices for coping with different

environments enacted by simulators or HiL.

The data and scripts of our study are publicly available [45].

The paper is organized as follows. Section 2 described the study

design and planning. Results are discussed in Section 3, while the

threats to their validity are reported in Section 4. Section 5 discusses

the related literature, while Section 6 summarizes the main findings

of the study, and outlines directions for future work.

2 STUDY DESIGN

The goal of this study is to investigate challenges and bad practices

arising when setting and evolving CI/CD pipelines of open-source

CPSs, and how developers cope with them. The perspective is of
researchers, interested in studying and improving the development

of CPSs. The context consists of 20 C/C++ open-source CPSs hosted

on GitHub. The paper addresses the following research question:

What are the challenges and bad practices occurring
when applying CI/CD to CPSs? How are they miti-
gated/resolved?

We use the term challenge to refer to a demanding task that de-

velopers face and wish to overcome during CPS development, e.g.,

hardware integration. A mitigation is a strategy aimed at reducing

the severity of the challenge, e.g., limiting the use of HiL in periodic

builds to avoid slow continuous builds. With bad practice, consis-
tently with previous literature [46], we refer to a bad application of

CI/CD principles, such as having a continuous build overcoming

the “10-minutes” rule. In the presence of bad practices, developers

tend to apply “concrete” restructuring (e.g., refactoring) actions

to the pipeline configuration files. For instance, developers might

simplify a build matrix by removing obsolete environments.

2.1 Context Selection and Data Extraction

The study is based on the qualitative analysis of 670 closed (i.e.,

merged and unmerged) PRs extracted from 20 CPS-related open-

source projects hosted on GitHub.

Previous literature has been studied software development prac-

tices by mining PRs. For example, security issues [13, 33], docu-

menting software [6], design decisions [9, 42], software decay [7],

or refactoring [32] have been investigated using PRs. Other studies

investigated how PRs were used from the perspective of software

contributors [21] or integrators [22].

In our work, we focus on PRs because we conjecture that

bad practices/challenges together with their related restructur-

ing/mitigation strategies are likely to be discussed by developers,

instead of being simply reported as a summary of their changes,

i.e., PR title or commit message. By simply analyzing commits and

their messages would unlikely allow us to understand the rationale

of the changes made, and, above all, the challenges encountered

by developers in a given circumstance. Note that, we also consider

unmerged PRs because there are cases where a PR discussing a

challenge or bad practice together with a possible solution is not

merged because it has lower priority with respect to other ongoing

activities (e.g., PR #10027 from ardupilot
1
stating: “GitHub doesn’t

want to collaborate, continuing on #10589”). The selected projects

are (mainly) written in two different programming languages, i.e.,

C and C++, which are the most popular for CPS development [36].

We could have considered multiple languages, but then, once again,

this would have resulted in very heterogeneous pipelines in terms

of used technology, e.g., for compilation, testing, static analysis, or

deployment.

To identify CPS-related projects, we leveraged a combination

of a preliminary search conducted by using project topics as a

query with further refinement. First, we identified a set of GitHub

topics relevant for CPS projects: {automotive, autonomous-driving,
autonomous-vehicles, cyber-physical-systems, drone, drones, embed-
ded, embedded-systems, robot, robotics, ros, self-driving-car, self-
driving cars}. As it can be noticed, some topics (i.e., self-driving-car
and drone) appear both as singular and plural, and, since the GitHub
topic-based query performs an exact matching, both need to be

used. Furthermore, the topics being chosen represent CPS domains

(e.g., automotive, drones) rather than components (e.g., sensors). In

the end, we performed 13 · 2 = 26 queries as follows:

https://api.github.com/search/repositories?q=topic:
TOPIC+language:LANGUAGE

where LANGUAGE can be either C or C++, and TOPIC one of those

reported above. After obtaining the results of the queries, we com-

bined them, removed duplicates, and sorted the projects using the

number of forks, which we considered as a proxy of projects’ popu-

larity more reliable than stars [8]. Furthermore, in order to obtain

projects with (i) enough activity, (ii) active use of PRs, our premier

source of information, and (iii) enough contributors so that they

generate discussion and benefit enough from the feedback provided

by CI/CD, we excluded projects: (i) being forked from others; (ii)

not adopting a CI/CD infrastructure; (iii) having less than either 100

commits, 50 PRs, and 50 contributors. The use of CI/CDwas checked

by combining the automated matching previous work did [44] with

a manual check: i.e., by inspecting the repository and searching

for files/directories related to CI/CD service configurations, e.g.,

.travis.yml, .github/workflows, or appveyor.yml.
Rather than sampling PRs from a large set of candidate projects,

we prefer to consider a relatively small subset, to avoid sampling

zero/one PR from projects, and therefore having results that may

not cover different aspects of the studied projects. After the filtering,

1
https://github.com/ArduPilot/ardupilot/pull/10027. To reach each pull re-

quest mentioned in the paper you can simply use the following search

query: https://github.com/$OWNER/$REPO-NAME/pull/$PR-NUMBER, where

$OWNER/$REPO-NAME is detailed in Table 1 and $PR-NUMBER is reported in the

text.

https://github.com/ArduPilot/ardupilot/pull/10027

Problems and Solutions in Applying Continuous Integration and Delivery to 20 Open-Source Cyber-Physical Systems MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

we used Perceval [15], to retrieve the closed PRs from the top 20

projects in the list. As shown in Table 1, the set of projects features 7

CPS applications, 4 simulators, and 9 CPS components, e.g., libraries

that can be used to simplify CPS development. As the reader can

notice, to make our study more complete, we intentionally did not

restrict only to CPSs, but also to other components useful for CPS

development.

For each PR, we used the GitHub API to retrieve the set of com-

mits belonging to it, along with the path of the files they impact. It

is possible that because of rebasing, some of the initial commits are

not visible anymore. However, even in that case, we were able to

check the commits that were actually merged. After that, through

regular expressions applied to the file names, we restricted the set of

PRs to those that contain at least a commit changing: (i) CI/CD ser-

vice configuration scripts (identified as mentioned before), (ii) build

automation scripts (e.g., Makefiles), and (iii) files/directories con-

taining simulators or simulator/HiL configurations. The latter were

identified through manual analysis of the repositories. For instance,

in rusefi there are two specific directories dealing with hardware
and simulator, while in PX4-Autopilot under the Tools folder

there are the third-party simulators forked in the current version

of the project.

2.2 Qualitative analysis methodology

To address our research question, we manually analyzed a sample

of 670 PRs, through a hybrid card sorting strategy [37], since we

started from a predefined set of bad practices and restructuring

actions arising when setting/evolving pipeline for traditional sys-

tems. The analysis has been conducted in two different rounds. We

started by sampling and analyzing PRs from the top ten-ranked

projects to conduct a self-contained PR tagging to define a set of

categories (bad practices, challenges, mitigation strategies, and re-

structuring actions) as much complete as possible. At the end of the

first round, we realized that, differently from the study by Zampetti

et al. [46], in the CPS context developers also face challenges when

setting/evolving their pipelines. For this reason, we performed a

second round looking at PRs extracted from a completely different

set of projects, i.e., the subsequent 10 projects in the ranked list. In

other words, with the second round, we wanted to see the extent

to which the initial set of categories generalized on unseen data.

In both rounds, we performed a random-stratified sampling

(strata are the projects, i.e., PRs were sampled proportionally in

each project) over candidate PRs from the 10 projects included in

each round, obtaining a sample size of 364 and 306, respectively

(confidence interval ± 5%, confidence level 95%), as shown in Ta-

ble 1. As the reader can notice, the second set of projects has an

overall number of candidate PRs way smaller than the first one.

This is likely because projects with more forks naturally receive

more PRs from external contributors, but it is especially due to

the very high number of PRs some projects in the top-10 have, in

particular, PX4-Autopilot and paparazzi.

The manual analysis was performed by two independent an-

notators, i.e., the first two authors of this study, by applying the

following procedure. First, each annotator determined whether a

PR discussed CI/CD challenges or bad practices, and whether or not

Table 1: # of PRs in the sample scattered across the 20 CPS

open-source projects

First Round - Projects Category # closed # filtered # sampled

PX4/PX4-Autopilot CPS 11,598 2,881 149

paparazzi/paparazzi CPS 2,035 1,827 94

arduPilot/ardupilot CPS 12,953 759 39

cyberbotics/webots Simulator 2,678 695 36

carla-simulator/carla Simulator 1,069 282 15

cleanflight/cleanflight CPS 1,385 213 11

cartographer-project/cartographer CPS Component 1,277 141 7

nasa/fprime CPS Component 522 138 7

mavlink/mavros CPS Component 410 74 4

bulletphysics/bullet3 CPS Component 1,686 36 2

Total First Round — 35,604 7,046 364

Second Round - Projects Category # closed # filtered # sampled

rusefi/rusefi CPS 2,016 454 93

ros-planning/navigation2 CPS 1,567 385 79

dartsim/dart CPS Component 962 253 52

PX4/PX4-SITL_gazebo Simulator 550 157 32

CopterExpress/clover CPS Component 337 75 15

simbody/simbody Simualtor 411 66 13

ArduPilot/apm_planner CPS 385 52 11

linux-can/can-utils CPS Component 170 26 5

UAVCAN/libcanard CPS Component 106 19 4

ompl/ompl CPS Component 152 10 2

Total Second Round — 6,620 1,497 306

Overall — 42,224 8,543 670

they are CPS-specific. Specifically, we consider a challenge/bad prac-

tice to be CPS-specific when it is directly related to the usage/setting

of HiL or simulators in the pipeline, or whether it concerns a behav-

ior related with a CPS interaction, e.g., a flakiness resulting from

sensor data or, in general from CPS interaction. As an example,

consider PR #14228 from PX4-Autopilot where developers are

struggling with different behaviors between real hardware and data

coming from simulators, i.e., “gazebo sensor rates are very different

from real hardware”. Then, each PR has been further categorized

with a label describing the challenge/bad practice, as well as the

mitigation strategy adopted to overcome it. Note that the labeling

procedure started from a predefined list of categories related to (i)

bad practices in setting, using, and maintaining CI pipeline [46],

and (ii) restructuring actions applied during CI/CD pipelines evolu-

tion [44].

The PR labeling has been performed using an online spreadsheet

where the annotators could use drop-down menus to select pre-

viously defined categories, or add a new one when those did not

fit. At the end of each round, an open discussion was performed

by adding a third annotator, i.e., the third author of the study, by

checking all the PRs for which there were disagreements among

the two annotators (152 out of 364 and 88 out of 306 in the two

rounds, respectively). Furthermore, we also discussed PRs having

agreements and yes labels by both two annotators (52 and 27 in the

two rounds respectively). Based on the labeling procedure, we could

have different types of disagreements: (i) one annotator labeled the

PR as discussing an issue, while the other did not find it; (ii) the

two annotators disagree regarding whether the discussed prob-

lem is CPS-specific or not; (iii) the annotators assigned different

challenges; and (iv) the annotators disagreed about the mitigation

strategy.

In the first round, the annotators agreed in 73% of the cases on

whether a PR discusses a challenge or bad practice (80% in the

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

Table 2: CI/CD setting of the 20 CPSs open-source projects in the study

Project Description (Type)

CI/CD

Containers

3rd-party

HiL Build Environment

Fram. Sim.

PX4-Autopilot Drone flight controller (CPS)

AppVeyor

✓□ ✓□ ✓□ HW-based

GitHub

Jenkins

Travis-CI

Paparazzi Unmanned air vehicles system (CPS) Travis-CI ✓□ ✓□ Compilers-based

Ardupilot Vehicle autopilot systems (CPS)

AppVeyor

✓□ ✓□ ✓□ HW/Execution Env-basedGitHub

Semaphore

Webots Robot (Simulator) GitHub OS/ROS-based

Carla Autonomous driving (Simulator)

GitHub

✓□ Tasks-basedJenkins

Travis-CI

Cleanflight Flight controller (CPS)

Azure

✓□ Compilers-basedGitHub

Travis-CI

Cartographer

Localization and mapping system

AppVeyor

✓□ OS-based

(CPS Component)

GitHub

Travis-CI

Fprime

Framework for spaceflight applica-

tions (CPS Component)

GitHub Tasks-based

Mavros

Ground control station communica-

tion (CPS Component)

GitHub ✓□ OS/Language-based

Bullet3

Physics/collision simulation AppVeyor

(CPS Component) GitHub

Rusefi Control unit engine (CPS) GitHub ✓□ ✓□ HW-based

Navigation2 Robot navigation system (CPS)

Circle-CI

✓□ ✓□
GitHub

Dart

Animation/robotics toolkit

GitHub ✓□ OS-based

(CPS Component)

PX4-SITL_gazebo Flight (Simulator) GitHub ✓□ ✓□ ✓□ OS/ROS-based

Clover

Autonomous drone control

GitHub ✓□ ROS-based

(CPS Component)

Simbody Dynamics/physics (Simulator)

AppVeyor

OS-basedGitHub

Travis-CI

Apm_planner Ground station application (CPS) Travis-CI ✓□ ✓□ OS-based

Can-utils CAN bus utilities (CPS Component)

GitHub

Tasks-based

Travis-CI

Libcanard

Intra-vehicular communication

GitHub ✓□ Compilers-based

(CPS Component)

Ompl

Motion planning library AppVeyor

✓□ OS-based

(CPS Component) Travis-CI

second round). While these percentages seem high, it is possible

that the annotators agreed by chance. Therefore, we computed

the Cohen’s k [12], which resulted to be 0.4 (fair to moderate) in

the first round, and raised up to 0.53 (moderate) in the second

round. Then, we computed the Krippendorff’s α [26] inter-rater

agreement in terms of whether or not the challenge/bad practice

is CPS-specific, and in terms of kind of bad practice, challenge,

restructuring action and mitigation. Krippendorff’s α was used

as for such fields the labeling could be incomplete (given PR, an

annotator could have specified the bad practice, while the other

none). For what concerns the specificity to the CPS domain, we

obtained α = 0.68 (first round) and α = 0.67 (second round), both

considered acceptable agreements. Also for the bad practices we

obtained an acceptable agreement in both rounds (α = 0.73 and

α = 0.84), while the agreement is slightly below the threshold

of the acceptable agreements in terms of challenges (α = 0.61

Problems and Solutions in Applying Continuous Integration and Delivery to 20 Open-Source Cyber-Physical Systems MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

and α = 0.63, respectively). The latter is lower because for the

challenges we did not start from any previously defined set of

categories. For the restructuring actions in both rounds, we found

an acceptable α (> 0.73), while we were not able to compute the

Krippendorff’s α [26] for the mitigation strategies, since we have

few data points in both rounds, i.e., 27 and 25, respectively. For that,

we avoided agreement by chance by reviewing every single case.

In the first round, annotators used 22 bad practices, and 14 re-

structuring actions from the previously defined categorizations [44,

46], and added 7 unseen bad practices and 2 restructuring actions.

Furthermore, they introduced 17 CPS-specific challenges, addressed

with 8 different mitigation strategies. During the second round, in-

stead, the annotators (i) reused 31 bad practices, 15 restructuring

actions, 10 challenges and 4 mitigation strategies, and (ii) added

one new bad practice, one restructuring action, one challenge and

one mitigation.

To sum up, as outcome of the two rounds, we produced a list of:

(i) 34 bad practices, among the 79 elicited by previous work [46] that

occurred in the analyzed CPS projects, with 8 additional ones; (ii)

18 challenges faced when applying CI/CD to CPSs; (iii) 9 mitigation

strategies for challenges; and (iv) 16 restructuring actions to the

CI/CD pipelines among the 34 from previous work [44], with 3

additional ones.

3 STUDY RESULTS

This section discusses the findings of the study detailed in Section 2.

We start by discussing the CI/CD pipeline setting for the 20 studied

projects. Then, we discuss challenges and related mitigation, and,

finally, bad practices with restructuring actions. For the latter, we

report and discuss only relations occurring more than once in

our sample (others are in the replication package), and emphasize

the discussion of CPS-specific problems. Note that, while all the

considered PRs and discussed challenges relate to changes to CI/CD

configuration, some may be valid to CPSs in general, although they

will inevitably have a direct impact on the application of CI/CD,

especially because theymake its automation harder and its feedback

less reliable.

3.1 CI/CD pipelines of the studied projects

Table 2 provides an overview of the projects’ pipelines as it is

observed on their main branch on GitHub to date
2
.

Half of the projects rely on more than one CI/CD framework. In

some cases, e.g., PX4/Autopilot and Ardupilot, different frame-

works are used for local tests on HiL, and for tests on simulators

on the cloud. Also, we found cases where some frameworks are

not updated anymore in the projects (refer to the ones having both

Travis-CI and GitHub), and cases where developers are migrating to

a different framework. Unsurprisingly, 17 out of 20 projects adopt

the GitHub CI/CD framework.

11 projects use containers in the pipeline for different purposes.

For instance, PX4-Autopilot, Ardupilot, cartographer, and

ompl use Docker containers to deal with different operating sys-

tems, clover has different Ubuntu images dealing with different

raspberry-pi models, while paparazzi is the only one relying on

virtual machines.

2
Last accessed at January 18, 2022

Figure 1: Relations between Challenges and Mitigations

Nine projects rely on third-party simulators. Note: a simulator

may, in turn, rely on other simulators for specific aspects, i.e., carla

(which is a car simulator) relies on other simulators, in this case,

a traffic simulator PTV-vissim [3], whereas PX4-SITL_gazebo is

a set of simulator plugins that, to be tested, need to be integrated

with the Gazebo robot simulator [2].

In some cases, the pipeline includes running the software on HiL

(sixth column in Table 2). Only a quarter of the projects have it,

likely due to the open-source domain and the prevalence of hosted,

cloud-based CI/CD services.

All projects, except navigation2, have multiple build environ-

ments in the same pipeline. In some cases, the purpose is to run CI

on different operating systems, e.g., ROS (Robot Operating System)

distributions, or simply Linux/MacOS/Windows versions, while oth-

ers customize environments based on the compilers or the type of

tasks included in the pipeline. Moreover, multiple environments are

used to deal with multiple hardware devices, as for PX4-Autopilot

where there is a build environment for each board.

3.2 Challenges and Mitigation Strategies

Figure 1 shows the challenges developers face when setting and

evolving a CI/CD pipeline for CPS development, together with

the mitigation strategies adopted to overcome them. To simplify

the discussion, the challenges have been grouped into three differ-

ent categories, each one related to a specific aspect of the CI/CD

pipeline—flaky behavior, simulators, and HiL. For each category,

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

we report a brief description of the identified challenges, and by

using qualitative examples, we highlight the strategies adopted to

deal with them.

3.2.1 Flaky behavior. This category accounts for three different

root causes that lead to non-determinism in the build execution.

Flakiness due to no control over resources, similarly

to what occurs in conventional systems relying on CI/CD, may

manifest when the pipeline owner has no control over external

resources included in the CI/CD process, such as the load on the

server-side, or the inappropriate initialization of the server used

by the CI/CD process, e.g., PR #12373 in PX4-Autopilot stating:

“Sometimes Jenkins misses the initial boot after upload and gets stuck”.
As expected, there are differentmitigation strategies used to deal
with the problem: (i) use timeout, (ii) modify the configuration of

the pipeline, and (iii) change the simulators’ setting so that it is

possible to recognize issues dealing with the impossibility to reach

the simulators within the CI/CD process. An interesting example

comes from PR #576 in PX4-SITL_gazebo, where developers had

to modify the configuration so that it was possible to discriminate

SITL and firmware tests, to avoid possible interference between

them, leading to “intermittent failures”.
We found three different PRs discussing FlakyNetwork. Con-

sider PR #2234 from paparazzi where “2 seconds is a bit to[o] short
in some cases when the router takes longer to reply” where developers
ended up with increasing the timeout, i.e., “5 seconds gives much bet-
ter results.” In other cases themitigation strategies were (i) using
retry, or (ii) identifying the root cause of the problem and fixing it,

as in PR #2170 from navigation2where it was required “[u]pdating
warning that occasionally crashes test on rclpy QoS updates”. While

flakiness due to network issues also occurs in conventional soft-

ware, in CPSs the interaction between different devices may make

things worse.

Finally, since CPSs are systems of systems, it is possible to have

flakiness due to features’ interaction, due to the pres-

ence of a complex interacting environment. Interestingly, PR #598

reports a discussion where developers struggle to have 100% of

test passing in CI, due to a high level of interaction between differ-

ent features under test, i.e., “system test”. Themitigation strategy
used deals with retry, e.g., changing the number of retries, as it

happens in PR #984 from Navigation2 for “debug[ging] stability
issues”.

3.2.2 Simulators. This category groups seven challenges related

to simulator issues and limitations. One out of seven does not

come from PRs where developers also provide amitigation strat-
egy, i.e., Choose among different simulators. For instance,

PR #14539 from PX4-Autopilot discusses and compares the fea-

tures provided by two different simulators to decide whether or

not to change the one their pipeline relies on. Specifically, PX4-

Autopilot relies on Gazebo, however “FlightGear has better support
for modeling of rotor-craft than the current PX4’s mainstream simu-
lator Gazebo.”

Simulators limited in functionality is mentioned in 20

PRs of our sample. This challenge can be due to the presence of

a complex environment that must be simulated, or to the use of

a third-party simulator still under development. As mitigation
strategies developers tend to (i) add the missing functionality, i.e.,

evolve the simulator, or (ii) replace the simulator with a better one.

As an example of (i), in PX4-Autopilot, we found a PR (#7235)

where it was needed to “[s]upport multi uav simulation in SITL
with Gazebo+MAVROS”, requiring developers to write code for the

missing functionality. As for (ii), PR #11835 in ardupilot discusses

the need to replace the Morse simulator with AirSim since the

previous one was not properly maintained. Note that, ardupilot

does not use the simulators as external libraries while importing

them into its code base and evolves the simulators based on the

needs.

Simulators’ functional correctness includes cases

where wrong assumptions about the system/device to simulate,

negatively impact the simulator’s correctness. This can be fixed

with three mitigation strategies: (i) by simply changing the sim-

ulators’ settings, (ii) by evolving/patching the simulator, or (iii)

by replacing it with a different one. As an example of changing

settings, PR #13060 from ardupilot modifies the parameters set in

the AirSim configuration to fix latitude/longitude accuracy: “fixed
accuracy of lat/lon in AirSim”. In terms of simulator fixes, PR #2128

in paparazzi fixed measurements issues in the simulator since

“Gazebo’s ... did not seem to take the ardrone’s velocity_decay (drag)
into account, instead it measured the drone’s acceleration without
drag which resulted in incorrect measurements in flight”. Finally, as
regards simulator replacement, in navigation2 there is PR #2037

which reverts a previous change done to patch a bug in the simula-

tor being used. In other words, in a previous PR developers replaced

the simulators with a different one, since they were waiting for a

concrete fix in the original simulator. Once the simulator was fixed,

they replaced the simulator in use.

Simulator installation and setting includes problems

related to the way developers configure the simulator to use in

the pipeline. Obviously, among themitigation strategies, the one
being used deals with changing the simulator configuration. As an

example, in PR #15206 from PX4-Autopilot, developers point out

the occurrence of silent failures due to a wrong strategy for cleaning

the server in which the simulator runs— “When running gazebo SITL
simulation multiple times, gzserver will sometimes silently fail. This
is due to the fact that gzserver didn’t exit cleanly from the previous
session.” PR #12781 of the same project, instead, discusses how to

run the simulator detached from its GUI (i.e., in headless mode) to

integrate it with a CI/CD pipeline on a cloud infrastructure.

Simulator real-time properties includes problems en-

countered by developers when real-time requirements for the sys-

tem have to be met. Only one PR belonging to this category pro-

vides a mitigation strategy that tweaks the simulator’s setting.

Specifically, PR #963 from paparazzi discussed the need for sim-

ulating sys_time in OCaml. While adding this feature, developers

realized that “unfortunately, the fixed freq[uency] of the ocaml sim
has many stupid effects if you run at a different frequency.” The lat-
ter implies a change in the simulator set to “redefine and use” the
PERIODIC_FREQUENCY value.

Simulator interacting environment includes problems

faced when the simulator interacts with a too complex environ-

ment that must be simulated as well. Among the six PRs reporting

this challenge, only one (#2473) in navigation2 also discusses the

mitigation strategy, that is, similarly to the previous cases, to

modify the simulator’s setting. Developers realized that to have

Problems and Solutions in Applying Continuous Integration and Delivery to 20 Open-Source Cyber-Physical Systems MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

a properly working simulator, “gazebo should be started with both
libgazebo_ros_init.so and libgazebo_ros_factory.so”.

Last, but not least, Simulators integration with CPS in-

cludes problems developers encounter when they need to interface

the simulators with real devices in the pipeline. Among the two

PRs belonging to this category, only PR # 237 from clover has

a mitigation strategy. In this case, the PX4 firmware was just

copied into the clover project and adapted to the project’s needs.

While a clover-specific version of PX4 is needed, developers sug-

gest having it in a separate workspace, i.e., available as a ROS node.
However, this configuration could make the integration difficult for

the users, and developers suggest the use of containers or virtual

machines.

3.2.3 HiL. This category includes six challenges related to issues

and limitations of adopting HiL within the pipeline. However, as

shown in Figure 1, only for three of them there is a PR where devel-

opers also provide the mitigation adopted to deal with them. Lack

of HiL specific smoke testmentioned in PR #12282 from PX4-

Autopilot, points out a problem with not having a smoke test

procedure on the HiL-side—“Jenkins HIL test run various commands
to inspect the system”. Smoke tests aim at testing the pipeline itself,

and for CPSs it also concerns testing the proper interactionwith HiL.

Also in PX4-Autopilot, PR #16396 describes parallelization prob-

lems when trying to use different real devices simultaneously (i.e.,

Parallelization and Resource Blockage). Finally, when

using both simulators and HiL within the pipeline, it is possible

to see Testing Discrepancies between SiL and HiL
3
. For

instance, PR #193 from clover states that developers “could [not]
figure out why the tests are failing, though: they do [not][fail on our
separate x86_64 jobs and they pass on real hardware.

Focusing on PRs where mitigation strategies are described, there

are cases where testing on HiL is constrained by the high cost

and lack of scalability of the hardware devices (i.e., HiL costs

and scalability). Whenever possible, as amitigation strategy,
developers use staged builds where they include simulators and

HiL to reach a good confidence level about the correct behavior of

the system under development (see PR #1496 from cleanflight).

A different challenge deals withHiL test complexity, mean-

ing that testing on HiL is very demanding to put in place, due to the

presence of a huge number of different devices to consider. Only one

out of six PRs describing this challenge also provides a possiblemit-
igation strategy that implies changing the HiL configuration used

in the pipeline. Specifically, PR #13722 from PX4-Autopilot faces

the challenge when a user tried to build a drone using raspberry
pi with a navio2 connected to the test rack. One of the project

owners reports that “Hardware drivers cannot be added to automatic
testing because the RPi platform is built up by a lot of different sensor
solutions in most cases. Things that CI can do are limited to common
modules.”

Last, but not least, HiL interfacing issues includes 5 PRs,

with two also reporting a mitigation strategy. In PR #171 from

apm_planner, developers had problems interfacing with the de-

vice’s serial port and solved it by using the libudev API to introspect
devices available in the local system. Instead, PR #14156 from PX4-

Autopilot discusses a problem related to “matching between driver

3
SiL is acronym of Software in the Loop — HiL is acronym of Hardware in the Loop

and configured device” that is a “bit tricky for drivers supporting mul-
tiple devices, like ms5611 and ms5607 that do auto-detection. It works,
but both sides (driver+board config) need to use the same IDs.” In this

case, no clear solution was found. PR #14054 from PX4-Autopilot,

instead, mentions the need of relying on mocking to speed up the

builds. Specifically, developers create a “mockup optical flow model,
that computes a flow measurement without rendering an image” to
speed up the “CI SITL tests”.

3.2.4 Others. This category accounts for two challenges that can-

not fit any previous categories described, and for which no mit-

igation strategy was proposed. Very often developers deal with

Limited software and/or hardware resources influenc-

ing the type of execution environment used in the pipeline. An

example is described in PR #17211 from PX4-Autopilotwhere “the
main stack of the tests is quite large, so it [is] increasingly problematic
on older boards that do [not] have enough memory to run both the
tests runner and allocate a new task or thread for their test activ-
ity. Also, developers might face issues related to the presence

of complex, non-functional reqirements, e.g., real-time

operating systems, that might constrain the pipeline settings. For

instance, in PR #3170 from PX4-Autopilot developers struggle

with “improving the portability of the firmware to new boards.”

3.3 Bad Practices and Restructuring Actions

Figure 2 shows how developers address the bad practices through

restructuring actions, as found in our sample. We only report and

detail (with qualitative examples) relations occurring more than

once, while you can find all the occurrences in our replication

package [45]. Since for bad practices and restructuring actions we

started with what already known from previous literature [44, 46],

Figure 2 highlights with a (*) bad practices and restructuring actions

not found in previous literature.

3.3.1 Infrastructure Choices. We found two different bad practices

dealing with poor software choices when setting the pipeline. Use

an unsuitable tool/plug-in relates to the inappropriate set-

ting of the cache, or to the adoption of a tool increasing the build

execution time. The possible restructuring actions in this case

are: (i) change the cache configuration, (ii) move to containerization,

and (iii) replace the tool/plug-in with a suitable one (see Figure 2).

As an example of (i), PR #4208 from ardupilot discusses the impact

the cache size has on compilation time: “how ccache makes things
faster is retaining some info between builds when we change tar-
gets. Or, do we clean between each target and thus don’t need ccache
anyway?” and decide to increase it. In the same project, PR #3228,

instead, describes the advantages of adopting the container-based

infrastructure rather than virtual machines, as a more lightweight

solution also allowing caching facilities, i.e., “The biggest advantage
of using the container-based one is the ability to cache a) things we
need to download and b) intermediary build steps by using ccache”.

InappropriateCI/CD framework includes cases where de-

velopers deal with limitations in the CI/CD infrastructure being

used, e.g., a limited number of parallel tasks is allowed, or difficulty

to automate certain tasks. For instance, PR #15463 from ardupi-

lot, as a restructuring action, replaces the CI/CD infrastructure

for running a specific task, i.e., from Travis-CI to GitHub Actions,

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

Figure 2: Relations betweenBad Practices andRestructuring

mentioning as an advantage the build execution time reduction due

to the possibility of having “20 tasks in parallel”, other than a “fast
boot”.

3.3.2 Build Initialization. This category has one bad practice, i.e.,

Inappropriate build environment clean-up addressed us-

ing five possible restructuring actions: (i) change cache configu-
ration; (ii) clean-up build matrix aiming at improving performance;

(iii) reorder build steps; (iv) update checks in the build process; and,

(v) modify the triggering strategy. While such changes apply for

conventional systems too, the complexity of CPSs may impact the

build duration in a way that the build process needs to be properly

reconfigured. To this regard, we found cases where, by adding a

check in the build process, developers modify what has to be exe-

cuted based on the type of change (e.g., PR #3478 from webots), or

else modify the triggering strategy by adopting incremental builds

(e.g., PR #4458 from PX4-Autopilot).

3.3.3 Build Process Definition. This category features two bad prac-
tices dealing with how jobs are used in the CI/CD process: (i) Use

wide and in-cohesive build jobs and (ii) Use monolithic

builds, mainly fixed using as restructuring actions, the split-

ting of build scripts/jobs, or simplifying the build matrix. Focusing

the attention on the CPS context, we found PR #9692 from PX4-

Autopilot where developers introduces different jobs each based

on a specific task, and defined a job for separating the software-

in-the-loop (SiL) tests from other types of tests executed in the

pipeline. On the contrary, developers from ardupilot combined

“SITL and unit-test tasks ... in the same instance” once realized that

they “spent more time spooling up/installing tooling then we did doing
either of these tasks” (PR #13265).

3.3.4 Build Execution. This category groups four bad practices,

one not part of previously proposed bad practices for conventional

systems [46], i.e., Include unneeded environment, which is

obviously addressed with restructuring actions that (i) remove

unneeded environments (used 4 times), or (ii) clean-up the build

matrix (used one time). In other words, and this is particularly true

for CPSs, the variety of devices, firmware versions, OS versions on

which a system needs to be tested change over time, and keeping

unneeded ones just slows down the build. For instance, PR #1507

from rusefi removes a duplicated environment, since developers

realized that “The workflows for console with Java version 8 and the
one intended for Java 11 are identical”.

For what concerns the bad practices already known from pre-

vious literature [46], we found cases where CI/CD parallelization

is inappropriately used, and cases where build steps are inappro-

priately ordered, leading to a pipeline that is not able to find bugs

following the “Fast Feedback” principle (see Figure 2). Furthermore,

while previous literature encourages parallelization for what possi-

ble [16, 46], developers must pay careful attention to dependencies

among steps. For instance, PR #1094 from cartographermentions:

“the tests in cartographer/cloud cannot run concurrently with each
other, use tags exclusive to say that they should not be run at the
same time as other tests.”

3.3.5 Build Triggering. We found one bad practice in this category,

i.e., Poor triggering strategy, and, as suggested by its name,

it includes cases where developers apply a wrong build triggering

strategy. For instance, PR #2588 from rusefi discusses the need

of having the possibility to run the build manually for “pinout
re-generation”, so that is possible to create an updated version of

the artifacts based on developers’ needs. As restructuring action,
developers enable manual builds in the GitHub workflow action by

adding the workflow_dispatch option in the .yml files.

3.3.6 Build Dependency Management. This category groups two

bad practices related to the strategy adopted for dependencies’

handling that might lead to unnecessary build failures: Inappro-

priate cache handling, and Include unneeded depen-

dencies. The restructuring actions we found are mainly related

to change (i) the cache configuration, or (ii) the dependency instal-

lation policy. As an example of the latter, PR #924 from mavros

reports the need to “blacklist HIL for APM since it is not relevant”
since there is no support for HiL.

3.3.7 Build Outcome. In the presence of a build resulting in a

complex and heterogeneous set of warnings—and for CPSs they

may come from the system itself, from simulators, HiL interfacing,

etc.—developers need to carefully ponder how they influence the

build outcome, i.e., passed or failed. Four out of eight PRs belonging

to Green build with errors/failures discusses the need

Problems and Solutions in Applying Continuous Integration and Delivery to 20 Open-Source Cyber-Physical Systems MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

for having warnings failing a build if it is triggered before a new

release of the code, e.g., PR #1629 from dart stating: “Treat warnings
as errors on release mode”. As regards Do not fail a build as

soon as a failure/error is encountered, PR #11529 from

ardupilot stresses the importance of the “Fast-Feedback” principle,

i.e., “exit on panic so we don’t waste time waiting around”, fixed
adding a check in the build process definition.

3.3.8 Build Output. Other than determining the build outcome,

the output of various tools also influences the content of build logs.

In this category we found two (opposite) bad practices: Miss info

in build logs, and Build log with verbose info, mainly

addressed using, as possible restructuring actions, (i) improving

the readability of the build log (used in the majority of cases), or

(ii) changing how the build outcome is determined. PR #1223 from

dart discusses a problem with build logs not clearly reporting that

some components are failing due to external dependencies being

missing. In this case, instead of having a failed build, developers

ask to add a configuration error being reported in the build log.

3.3.9 Build Duration. For what concerns the bad practice In-

clude unneeded tasks, in our sample, we found, as pos-

sible restructuring actions: (i) remove unneeded environ-

ments/scripts/tasks, and (ii) update checks in the build process.

For instance, PR #16191 from PX4-Autopilot reports a discus-

sion about the presence of hundreds of [unneeded] commands ex-
ecuted across all the boards fixed by updating the checks in the

Jenkinsfile-hardware workflow. For Build too long, devel-

opers tend to use the same restructuring actions as before, plus

replace tools/methods for accomplishing a specific task. From a

CPS perspective, we found a PR (#205) from navigation2 where

developers found that “when building from source it takes too long (>
50 minutes) to build ROS2”, and conclude that “if there’s a daily build
(or at least weekly) that could generate a ros2:latest docker image for
us to pull and use in our testing.” In other words, whenever possible,

finding an out-of-box Docker image instead of building a complex

environment make the build much faster.

3.3.10 Build Maintainability. In this category, we found two bad

practices dealing with poor build maintainability and portability.

For instance, if a pipeline configuration is highly-customized over

a specific environment, it is not easy to make it working in a

completely different one, and rework is needed to let the system

operate in multiple OSs. Cloned build configurations has

as possible restructuring actions (i) remove unneeded environ-

ments/scripts/tasks, and (ii) use matrix expansion feature or list job

configuration explicitly. For instance, PR #2843 from rusefi sug-

gests to removes two duplicated build configurations dealing with

different hardware devices, i.e., boards, while introducing a single

configuration and relying on thematrix expansion feature to specify

the different boards (“using a matrix for different boards/machines”).
Another bad practice, not specific to CPSs yet occurred in our sam-

ple, that is Poor naming of build jobs is related to naming

conventions, e.g., see PR #3056 from rusefi.

3.3.11 Security. In the original work about CI/CD bad prac-

tices [46], this category features one bad practice related to authen-

tication credentials in clear in the CI/CD scripts. Further security

issues in infrastructure-as-code were defined by Rahman et al. [34].

In our study, instead, we found a new bad practice (not considered

in the above works): Use sudo for accessing Docker with

only one restructuring action related to Introducing/Removing

sudo in commands. An example is PR #1318 from carla reporting:

“It is bad practice to use sudo for accessing docker..” The Docker dae-
mon usually requires root privileges. This means that a container

can easily alter the host file system without any restriction. By

exploiting a privilege escalation attack, a malicious user may gain

root user access to the host. The best way to prevent this kind of

attack is to run processes with a non-root user or create a docker

group composed only of trusted users [1].

4 THREATS TO VALIDITY

Threats to construct validity concern the relationship between the-

ory and observation. The biggest challenge is the extent to which

our interpretation of PR discussions reflects the challenges encoun-

tered by developers. We mitigated this challenge by (i) having

multiple annotators to assess the PRs, and (ii) inspecting not only

discussions but also the changes made to CI/CD-related artifacts.

That being said, it would be desirable to complement the PR-based

study with further studies, e.g., by surveying developers. Measure-

ment errors may be due to subjectiveness and difficulties in the

manual classification of PRs. This threat has been mitigated by

having multiple, independent annotators, analyzing the inter-rater

agreement, and reviewing every single case (including agreement

cases) where a PR contained the annotation of any between bad

practices, challenges, mitigation strategies, and restructurings. This

means that, in the worst case, we could have missed some relevant

cases, although we have confidence in the classification of the con-

sidered ones. The analysis of changes could be affected by history

rewriting, however when a change was positively considered in a

PR discussion, then its commits (or a cherry-picked subset of them)

were accessible.

Threats to internal validity are mainly about the extent to which

we can claim the cause-effect relationships between challenges/bad

practices and mitigation/restructuring actions. In our study, we

went beyond the simple “co-occurrences”, but we determined, by

looking at the developers’ discussion, whether a given change was

actually performed with the purpose of addressing a challenge/bad

practice documented in the PR discussion.

Threats to conclusion validity may depend on the sampling strat-

egy being used for projects and for PRs. As for the projects, we re-

stricted our attention to projects with non-empty topics on GitHub,

yet there could be other projects, belonging to the same topic,

not properly tagged by the authors on GitHub. For what con-

cerns the software artifacts used for identifying challenges/bad

practices and related mitigation/restructuring actions, similarly to

previous studies aimed at studying software development prac-

tices [6, 7, 9, 13, 32, 33, 42], we looked at PR discussions, even if

we are aware that it is still possible to extract developer’s intent

from commit messages. Finally, for PR sampling, as explained, the

two rounds were completely independent, therefore we did not

compute a single sampling. However, because of that, since the last

10 projects had fewer PRs than the first one, the sampling was more

intense for them.

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

Threats to external validity are about the generalization of our

findings. The study is intentionally small in terms of the number

of projects, and therefore our results may not generalize beyond

those systems. As explained in the introduction and in Section 2,

the selection of a limited number of projects has been necessary

to sample enough PRs per project. Moreover, the selected topics

may not exhaustively cover the universe of CPS projects on GitHub,

indeed we only consider topics representative of CPS domains

rather than components, e.g., sensors. Nevertheless, we agree that a

wider selection of topics could have been resulted in a different set of

projects. Furthermore, the 670 PRs can be considered representative

of the chosen projects, covering different CPS domains in the open-

source, while they will not generalize to the universe of CPSs. Also,

the study is focused on C/C++ projects and open-source projects.

Further research is required to study other languages (less prevalent

than C/C++ for CPSs [36]), and above all closed-source, for which,

however, a different study methodology such as interviews and

ethnography would be required.

5 RELATEDWORK

This section discusses related literature about CI/CD barriers and

bad practices and challenges in CPS development.

5.1 CI/CD barriers and bad practices

Through interviews, Hilton et al. [24] investigated barriers encoun-

tered by developers when moving toward CI. The studied barriers

are mainly related to quality assurance, security, and flexibility. Ols-

son et al. [31], instead, looked at barriers faced by companies mov-

ing towards CD, i.e., complexity of the deployment environment,

need to achieve timely delivery, and lack of a complete overview

of all the development projects. Previous literature also defined

bad practices arising from wrong or sub-optimal application of the

CI/CD process. Specifically, Duvall [17] defined CI/CD antipatterns,

while Zampetti et al. [46] empirically elicited bad practices from

interviews and Stack Overflow posts. Finally, Zampetti et al. [44]

defined, by mining CI/CD configuration changes, 34 pipeline re-

structuring actions aiming at improving extra-functional properties

and/or changing the pipeline’s behavior.

The aforementioned work focuses on conventional CI/CD,

whereas our study is specific to CPSs and highlights challenges in

that context. While we used the bad practices [46] and restructuring

actions [44] of previous literature as a starting point, our work goes

beyond that because (i) Zampetti et al. [46] inferred bad practices

from Stack Overflow discussions and interviews, while we identify

them in actual projects, (ii) both bad practices and restructuring

actions have been extended (and specialized) to new specific prob-

lems and solutions, (iii) we also identify challenges and mitigation,

and, last but not least, (iv) we relate bad practices to restructuring

actions, and challenges to mitigation.

5.2 Challenges in CPS development

As pointed out by several studies, CPS development is much more

challenging than conventional software.

Törngren et al. [39] investigated general challenges related to

CPS design focusing on the complexity of the environment in which

these systems operate. We study how the complexity of CPSs is

dealt when setting up CI/CD pipelines, for example, by leveraging

virtual machines and containers, and how simulators are interfaced

with the pipeline.

Mårtensson et al. [30] identified factors to consider when apply-

ing CI to software-intensive embedded systems such as complexity

of user scenarios, compliance to standards, long build times, secu-

rity, and test environments. Their study methodology and context

(two industrial case studies) are different from ours (PRs from the

open-source). Nevertheless, some of the factors they found are also

reflected in the challenges highlighted in our study, for which we

also identified mitigation-related actions and changes.

Defects introduced in CPSs can have their own specificity, con-

cerning the presence of CPS-specific bugs. Garcia et al. [20] and

Wang et al. [43] studied bugs in two CPS-related domains, au-

tonomous cars and unmanned aerial vehicles, respectively. The

presence of CPS-specific bugs, for example, related to an anoma-

lous behavior of a vehicle in the presence of traffic lights may

require suitable testing activities, possibly using simulators. This

may impact the way CI/CD pipelines are configured.

Concerning CPS testing, Afzal et al. [5], by using interviews

with roboticists, identified 12 testing practices, 4 challenges about

designing testing platforms tests, and 5 challenges about running

and automating tests. While they focused on challenges specific

to testing activities, our study focuses on problems faced while

setting up a pipeline for CPS development. Defining proper oracles

represents a challenge for many CPSs, as the oracle needs to capture

the systems’ behavior from sensors, or from a camera looking at the

system in action, and compare it with the expected one. Jahangirova

et al. [25] proposed metrics that capture drivers’ behavior that

can be used in the context of testing autonomous vehicles. Stocco

et al. [38] proposed a deep neural network approach to predict the

misbehavior of autonomous cars within a Udacity [4] simulator. The

availability of metrics and approaches defined above is functional

to the proper setting of CI for CPSs, to achieve testing automation.

Malavolta et al. [29] studied the development of systems based on

ROS. For that purpose, they looked at 335 ROS-related repositories,

and have built a set of guidelines, validated by robot-development

experts. Our work is complementary to them as we focus more

on the CI/CD process than on the product. Other related work to

ROS development [11, 28] concerns energy consumption of these

systems.

6 CONCLUSIONS AND FUTUREWORK

This paper analyzes CI/CD pipelines of 20 open-source Cyber-

Physical Systems (CPSs). Specifically, by qualitatively analyzing

a sample of 670 pull requests (PRs), we studied challenges and

bad practices occurring when setting up and maintaining these

pipelines, and their mitigation and restructuring actions.

On the one hand, using a different study protocol, the results

confirm several bad practices already known for conventional sys-

tems. On the other hand, new challenges (with their mitigation)

emerge, and some existing problems are exacerbated in the CPS

context. Among others:

Several root causes (andmitigation) forflakiness. Flakiness

is a relevant problem in testing conventional systems [18, 27, 35,

47, 49]. For CPSs, the interaction between multiple heterogeneous

Problems and Solutions in Applying Continuous Integration and Delivery to 20 Open-Source Cyber-Physical Systems MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

hardware and software components, and their (sometimes lost)

interconnection through the network worsen the problem. Specific

analyses are required to identify flakiness and mitigate/solve it.

Using and integrating simulators is challenging. Simula-

tors are a key asset for CPS development. By looking at the CI/CD

pipelines of open-source simulators, of their components, as well

as of systems leveraging them, the study shows that simulators

undergo evolutionary changes to cope with specific CPS needs. Fur-

thermore, if they are not designed to work within a CI/CD pipeline,

their integration becomes more challenging.

Simulators or HiL, this is the question. Simulators may not

properly reproduce the HiL behavior or the execution environment

in which it operates, and unlikely reflect hardware real-time prop-

erties. Sometimes developers decide to use both simulators and

HiL in the pipeline, at different stages. This either requires the use

of different CI/CD services (a local one and a cloud-hosted one)

or local runners for running tasks on HiL. Also, this may require

having different builds, with different periodicity, e.g., continuous

builds on simulators and periodic builds on HiL.

Complex environment, with multiple devices, operating

systems, and firmware versions. This has an impact on setting

up the build run-time environment, which set may become difficult

to perform and maintain, but also overly slow. Containerization is

the preferred solution, and it is achieved by setting up families of

predefined images specifically tailored for CPS run-time/simulation

needs. Furthermore, the set of parallel jobs/build matrices also

require consistent maintenance to (i) keep them up-to-date with

devices’ evolution, (ii) avoid builds on unnecessary configurations,

(iii) keep track of complex dependencies that may limit paralleliza-

tion, and (iv) use build stages to ensure fast feedback as much as

possible.

From the study, it emerges that CI/CD pipelines for CPS de-

velopment are extremely heterogeneous. Their configuration and

evolution vary a lot from system to system. That being said, it

would be useful, for future research, to have recommenders auto-

matically suggest pipeline changes every time a kind of problem

(or a bad practice) occurs during development. While this has been

done in the context of conventional CI/CD pipelines [19, 41], it may

be beneficial to conceive recommenders tailored for specific CPS

domains. Finally, specific studies on simulator integration patterns

and strategies are also desirable.

ACKNOWLEDGEMENTS

This work is supported by the European Union’s Horizon 2020

Research and Innovation Programme under grant agreement No.

957254.

REFERENCES

[1] [n. d.]. Docker security. https://docs.docker.com/engine/security/ Accessed Jan

20 2022.

[2] [n. d.]. Gazebo Robot Simulator. http://gazebosim.org/ Accessed Jan 18 2022.

[3] [n. d.]. PTV VisSim. https://www.ptvgroup.com/en/solutions/products/ptv-

vissim/ Accessed Jan 18 2022.

[4] [n. d.]. Udacity.A self-driving car simulator built with Unity. https://github.com/

udacity/self-driving-car-sim. Accessed Jan 18 2022.

[5] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Tim-

perley. 2020. A Study on Challenges of Testing Robotic Systems. In 13th IEEE
International Conference on Software Testing, Validation and Verification, ICST
2020, Porto, Portugal, October 24-28, 2020. IEEE, 96–107. https://doi.org/10.1109/

ICST46399.2020.00020

[6] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-

tion Issues Unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 1199–1210. https://doi.org/10.1109/ICSE.2019.00122

[7] Caio Barbosa, Anderson Uchôa, Daniel Coutinho, Filipe Falcão, Hyago Brito,

Guilherme Amaral, Vinicius Soares, Alessandro Garcia, Baldoino Fonseca, Marcio

Ribeiro, and Leonardo Sousa. 2020. Revealing the Social Aspects of Design Decay:

A Retrospective Study of Pull Requests. In Proceedings of the 34th Brazilian
Symposium on Software Engineering (Natal, Brazil) (SBES ’20). Association for

Computing Machinery, New York, NY, USA, 364–373. https://doi.org/10.1145/

3422392.3422443

[8] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-

standing Repository Starring Practices in a Social Coding Platform. J. Syst. Softw.
146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.016

[9] João Brunet, Gail C. Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey.

2014. Do Developers Discuss Design?. In Proceedings of the 11th Working
Conference on Mining Software Repositories (Hyderabad, India) (MSR 2014). As-
sociation for Computing Machinery, New York, NY, USA, 340–343. https:

//doi.org/10.1145/2597073.2597115

[10] L. Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE
Software 32, 2 (2015), 50–54.

[11] Katerina Chinnappan, Ivano Malavolta, Grace A. Lewis, Michel Albonico, and

Patricia Lago. 2021. Architectural Tactics for Energy-Aware Robotics Software:

A Preliminary Study. In Software Architecture - 15th European Conference, ECSA
2021, Virtual Event, Sweden, September 13-17, 2021, Proceedings. 164–171. https:

//doi.org/10.1007/978-3-030-86044-8_11

[12] J Cohen. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas.
20 (1960).

[13] Roland Croft, Yongzheng Xie, Mansooreh Zahedi, Muhammad Ali Babar, and

Christoph Treude. 2022. An empirical study of developers’ discussions about

security challenges of different programming languages. Empir. Softw. Eng. 27, 1
(2022), 27. https://doi.org/10.1007/s10664-021-10054-w

[14] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, AntonioM. López, and Vladlen

Koltun. 2017. CARLA: AnOpenUrbanDriving Simulator. In 1st Annual Conference
on Robot Learning, CoRL 2017 (Proceedings of Machine Learning Research, Vol. 78).
PMLR, 1–16.

[15] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-

Barahona. 2018. Perceval: Software project data at your will. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
1–4.

[16] Paul Duvall, StephenM.Matyas, andAndrewGlover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley.

[17] Paul M. Duvall. 2011. Continuous Delivery: Patterns and Antipatterns in the

Software Life Cycle. DZone refcard #145 (2011). https://dzone.com/refcardz/

continuous-delivery-patterns

[18] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.

Understanding flaky tests: the developer’s perspective. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. 830–840.

[19] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous

integration features: An empirical study of projects that (mis) use Travis CI. IEEE
Trans. Software Eng. 46, 1 (2018), 33–50.

[20] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred

Chen. 2020. A comprehensive study of autonomous vehicle bugs. In ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020. 385–396.

[21] Georgios Gousios, Margaret-Anne D. Storey, and Alberto Bacchelli. 2016. Work

practices and challenges in pull-based development: the contributor’s perspective.

In Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 285–296. https://doi.org/10.1145/2884781.

2884826

[22] Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie van

Deursen. 2015. Work Practices and Challenges in Pull-Based Development:

The Integrator’s Perspective. In 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. 358–368.
https://doi.org/10.1109/ICSE.2015.55

[23] Philipp Helle, Wladimir Schamai, and Carsten Strobel. 2016. Testing of Au-

tonomous Systems - Challenges and Current State-of-the-Art. INCOSE Interna-
tional Symposium (2016), 571–584.

[24] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny

Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flex-

ibility. In Proceedings of the 25th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2017.

[25] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality Metrics and

Oracles for Autonomous Vehicles Testing. In 14th IEEE Conference on Software
Testing, Verification and Validation, ICST 2021, Porto de Galinhas, Brazil, April
12-16, 2021. 194–204. https://doi.org/10.1109/ICST49551.2021.00030

https://docs.docker.com/engine/security/
http://gazebosim.org/
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
https://github.com/udacity/self-driving-car-sim.
https://github.com/udacity/self-driving-car-sim.
https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1145/3422392.3422443
https://doi.org/10.1145/3422392.3422443
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1145/2597073.2597115
https://doi.org/10.1145/2597073.2597115
https://doi.org/10.1007/978-3-030-86044-8_11
https://doi.org/10.1007/978-3-030-86044-8_11
https://doi.org/10.1007/s10664-021-10054-w
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/continuous-delivery-patterns
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICST49551.2021.00030

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA F. Zampetti et al.

[26] Klaus Krippendorff. 2004. Reliability in Content Analysis: Some common Mis-

conceptions and Recommendations. Journal of the Royal Statistical Society. Series
B (Methodological) 30, 3 (2004), 411–433.

[27] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan

Bell. 2020. A large-scale longitudinal study of flaky tests. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 202:1–202:29. https://doi.org/10.1145/3428270

[28] Ivano Malavolta, Katerina Chinnappan, Stan Swanborn, Grace A. Lewis, and

Patricia Lago. 2021. Mining the ROS ecosystem for Green Architectural Tactics in

Robotics and an Empirical Evaluation. In 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. 300–
311. https://doi.org/10.1109/MSR52588.2021.00042

[29] Ivano Malavolta, Grace Lewis, Bradley Schmerl, Patricia Lago, and David Garlan.

2020. How Do You Architect Your Robots? State of the Practice and Guidelines for

ROS-Based Systems. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Software Engineering in Practice (Seoul, South Korea)

(ICSE-SEIP ’20). ACM, New York, NY, USA, 31–40.

[30] Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. 2016. Continuous Integration

Applied to Software-Intensive Embedded Systems - Problems and Experiences.

In Product-Focused Software Process Improvement - 17th International Conference,
PROFES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings (Lecture
Notes in Computer Science, Vol. 10027). 448–457.

[31] Helena Holmstrom Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the

"Stairway to Heaven" – A Mulitiple-Case Study Exploring Barriers in the Tran-

sition from Agile Development Towards Continuous Deployment of Software.

In Proceedings of the 2012 38th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA ’12). IEEE Computer Society, Washington, DC,

USA, 392–399.

[32] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Pianta-

dosi, Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta. 2020. Why

Developers Refactor Source Code: A Mining-based Study. ACM Trans. Softw. Eng.
Methodol. 29, 4 (2020), 29:1–29:30. https://doi.org/10.1145/3408302

[33] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and

Emotion: Sentiment Analysis of Security Discussions on GitHub. In Proceedings
of the 11th Working Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 348–351.

https://doi.org/10.1145/2597073.2597117

[34] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The Seven Sins: Security

Smells in Infrastructure As Code Scripts. In Proceedings of the 41st International
Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, 164–175.

[35] August Shi, Jonathan Bell, and DarkoMarinov. 2019. Mitigating the effects of flaky

tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA. 112–122.

[36] P. Soulier, Depeng Li, and J. R. Williams. 2015. A survey of language-based

approaches to Cyber-Physical and embedded system development. Tsinghua
Science and Technology 20, 2 (2015), 130–141. https://doi.org/10.1109/TST.2015.

7085626

[37] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[38] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Misbe-

haviour prediction for autonomous driving systems. In ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea. 359–371.

[39] Martin Törngren and Ulf Sellgren. 2018. Complexity Challenges in Development
of Cyber-Physical Systems. Springer International Publishing, Cham, 478–503.

[40] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar T. Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integra-

tion in GitHub. In ESEC/SIGSOFT FSE. ACM, 805–816.

[41] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C Gall, and Massi-

miliano Di Penta. 2020. Configuration smells in continuous delivery pipelines:

a linter and a six-month study on GitLab. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 327–337.

[42] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail Mur-

phy. 2018. What Design Topics do Developers Discuss?. In 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC). 328–3283.

[43] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.

An exploratory study of autopilot software bugs in unmanned aerial vehicles.

In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece, August
23-28, 2021. 20–31. https://doi.org/10.1145/3468264.3468559

[44] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.

2021. CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quantita-

tive Study. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 471–482.

[45] Fiorella Zampetti, Vittoria Nardone, and Massimiliano Di Penta. 2022. Dataset
of the manuscript "Problems and Solutions in Applying Continuous Integration
and Delivery to 20 Open-Source Cyber-Physical Systems". https://doi.org/10.5281/

zenodo.5883236

[46] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,

Harald C. Gall, and Massimiliano Di Penta. 2020. An empirical characterization

of bad practices in continuous integration. Empirical Software Engineering 25, 2

(2020), 1095–1135.

[47] Peilun Zhang, Yanjie Jiang, Anjiang Wei, Victoria Stodden, Darko Marinov, and

August Shi. 2021. Domain-Specific Fixes for Flaky Tests withWrong Assumptions

on Underdetermined Specifications. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. 50–61.

[48] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-

dan Vasilescu. 2017. The Impact of Continuous Integration on Other Software

Development Practices: A Large-scale Empirical Study. In IEEE/ACM International
Conference on Automated Software Engineering (ASE) (Urbana-Champaign, IL,

USA). 12 pages. http://dl.acm.org/citation.cfm?id=3155562.3155575

[49] Celal Ziftci and Diego Cavalcanti. 2020. De-Flake Your Tests : Automatically

Locating Root Causes of Flaky Tests in Code At Google. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 736–745.

https://doi.org/10.1145/3428270
https://doi.org/10.1109/MSR52588.2021.00042
https://doi.org/10.1145/3408302
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1109/TST.2015.7085626
https://doi.org/10.1109/TST.2015.7085626
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.5281/zenodo.5883236
https://doi.org/10.5281/zenodo.5883236
http://dl.acm.org/citation.cfm?id=3155562.3155575

	Abstract
	1 Introduction
	2 Study Design
	2.1 Context Selection and Data Extraction
	2.2 Qualitative analysis methodology

	3 Study Results
	3.1 CI/CD pipelines of the studied projects
	3.2 Challenges and Mitigation Strategies
	3.3 Bad Practices and Restructuring Actions

	4 Threats to Validity
	5 Related Work
	5.1 CI/CD barriers and bad practices
	5.2 Challenges in CPS development

	6 Conclusions and Future Work
	References

