
An Empirical Study on the Fault-Inducing Effect of
Functional Constructs in Python

Fiorella Zampetti
University of Sannio, Italy

François Belias, Cyrine Zid, Giuliano Antoniol
Polytechnique Montréal, QC, Canada

Massimiliano Di Penta
University of Sannio, Italy

Abstract—Functional programming is expected to introduce
several benefits to programs, including fewer side effects, easier
parallelization, and even, in some circumstances, better compre-
hensibility. This paper investigates the extent to which the ad-
dition/modification of certain programming language constructs,
i.e., lambdas, comprehensions, and map/filter/reduce, have higher
chances to induce fixes than other changes. To this extent, we
analyze the change history of 200 popular open-source programs
written in Python, accounting for ' 630k commits and 6M
changes. The study results show that changes to functional
constructs have higher odds to induce fixes than other changes,
and that some functional constructs, such as lambdas and
comprehensions, have higher odds to induce fixes than others.
Finally, a qualitative analysis revealed different scenarios in
which functional constructs have been fixed. Results of this study
may trigger better development support when using functional
constructs during development, and prioritize code review and
testing on certain areas of the source code.

Index Terms—Functional Programming; Python; Fix-Inducing
Changes; Empirical Study

I. INTRODUCTION

Programming languages usually conceived to be used with
imperative or object-oriented paradigms may also introduce
functional constructs. Generally, functional programming is
intended to avoid functions having side effects on data
structures. This not only eases the parallelization, especially
when high performance is required, but also avoids undesired
side effects and consequently bugs [23], [46].

While some programming languages are purely functional,
i.e., they do not contain imperative features (e.g., Haskell), many
other languages allow a mix-up of functional and non-functional
constructs. A complete list of such languages is available
online [51]. In such a context, developers could implement the
same functionality with or without functional constructs. The
latter leads to an open discussion about possible effects on
performance and code understandability [24], [33], [45], [50].

In this paper, we focus on functional programming constructs
used in Python programs. The reason why we chose Python is
its increasing popularity, especially for data science/machine
learning applications. In many such data-intensive applications,
the use of functional constructs may become quite natural and
intuitive. Specifically, Python offers the following functional
programming features:

• Lambda functions: allowing the definition of anonymous
functions on the fly.

• List/Dictionary/Set comprehensions: providing a more
compact, and sometimes faster way of populating a data

structure (i.e., a list, dictionary, or set) by using iterations
and conditionals directly within the structure.

• Map/Reduce/Filter functions: allowing the applicability
of a function across several items in an iterable, in one
fell swoop.

• Function purity and immutability: functions with a
deterministic behavior based on their inputs (purity) that
do not modify the parameters (immutability).

While functional constructs have some promised, expected
advantages, developers may or may not be able to use them
properly [53]. This may be especially the case for “impure”
languages, where developers are mostly used to working with
imperative constructs.

This paper investigates the extent to which changes affecting
functional constructs have higher chances of inducing fixes than
other changes. While function purity/immutability is a very
important component of functional programming, we leave it
for future work, as it requires deeper (data-flow based) source
code analysis, not feasible with the available Python analysis
tools, and especially for performing a large-scale study.

The study has been conducted on a set of 200 Python projects,
obtained starting from a list of “engineered” projects [35],
filtering out projects forked from others, inactive, and with
fewer than 100 commits (to have enough change history), and
then ranking the remaining projects by decreasing number
of forks and manually removing tutorials, paper repositories,
notebooks, and non-English repositories. For the selected 200
projects, we analyzed their change history using the Python
AST library, and an implementation of the SZZ algorithm [43]
relying on PyDriller [44] and git blame. In total, we
analyzed 633,803 commits (affecting Python files) accounting
for 6,159,194 changes.

This study analyzes (i) whether changes to functional
constructs have higher chances to induce fixes, (ii) whether the
addition of new functional constructs induces more fixes than
their changes, and (iii) whether the chances to induce fixes vary
among different kinds of functional constructs. Additionally,
we complement the quantitative analysis with a qualitative one,
performed for validation purposes, but also for understanding
the scenarios where functional constructs induce a fix.

Results of the study show that changes to functional
constructs have 1.15 higher odds than other changes to directly
induce fixes, and 2.13 higher odds to indirectly induce fixes, i.e.,
the churn where the functional construct was changed induced
a fix. Moreover, lambdas and comprehensions have higher odds

to induce fixes than map/reduce/filter functions. The qualitative
analysis confirmed the quantitative results, but also pointed
out cases where functional constructs were factored out in
non-functional alternatives.

Our study paves the way toward better Integrated Develop-
ment Environments (IDEs) or program analysis tools aimed
at helping developers in writing source code when making
use of functional constructs. Second, it serves as a guide for
developers to prioritize code review and testing activities, i.e.,
functional constructs may require particular attention.

II. THE STUDIED PYTHON FUNCTIONAL CONSTRUCTS

This section briefly describes the functional constructs we
have analyzed in our study, referring to Python 3 syntax,
whereas in Section II-D we explain the main differences
between Python 2 and 3.

1 is_greater_than = lambda x, y: x>y
2 print(is_greater_than(1, 2))

Listing 1. Lambda expression example.

1 half_values_dict = {k:v / 2 for (k, v) in
all_dict.items()}

2 even_list = [x for x in num_list if x % 2 ==
0]

3 double_values = {2 * item for item in
my_collection}

Listing 2. Dictionary, list, and set comprehension examples.

1 def check_odd(number):
2 return number % 2 != 0
3

4 numbers = [0, 1, 2, 3, 4, 5, 6, 7]
5 odd_numbers = filter(check_odd, numbers)

Listing 3. Filter function example.

1 numbers = [1, 2, 3, 4, 5, 6, 7]
2 squares = map(lambda x: x ^ 2, numbers)
3 product = reduce(lambda x, y: x * y, numbers)

Listing 4. Map and Reduce functions examples.

A. Lambda Functions

A lambda function is an anonymous function that can be
defined on the fly in the code (as in Listing 1). It can also
be used as a parameter of a different function. Note that a
lambda function can take any number of arguments, but can
only have one expression. The lambda definition in Python has
the following syntax:
lambda arguments: expression.

B. Dictionary/List/Set Comprehensions

Dictionary, list, and set comprehensions are “Pythonic”
(although available in other languages such as Javascript)
ways to create and manipulate dictionaries, lists, and sets.
Specifically, a comprehension (i) iterates over a collection of
objects, (ii) checks whether the condition (if any) is satisfied,
and (iii) evaluates an expression, which becomes the element
of the collection being created (as shown in Listing 2). A

list comprehension can be defined with the following syntax
(similar syntax applies to the other comprehensions):
[expression for item in iterables if

condition]
where the condition is optional and may be composed of
multiple conditions relying on Boolean operators.

C. Map/Reduce/Filter Functions

map(), reduce() and filter() are three high-order
Python functions. They take a function as a parameter and
return a data object as output. Their syntax is similar:
FUN (function, iterable)

where FUN is either map, filter, or reduce.
filter() applies a function to each element of the iterable.

It returns a Boolean so that only elements where the return
value is True are retained. For instance, the filter function in
Listing 3 retains only odd numbers from the list.

Similarly to filter(), map() applies the function (that
can also be a lambda, as in the example of Listing 4) to each
element of the iterable. In the example, it returns a list of
squares for each element.
reduce() (which, differently from the previous functions,

is not built-in, but part of the functools package) applies a
function (that takes two arguments) to the items of an iterable
cumulatively, to generate a single value. The first invocation
is applied to the first two elements of the iterable, then to the
partial results and the next element, and so on. For instance,
in Listing 4, reduce() computes the product of the values
contained in numbers.

D. Functional constructs: Python 2 versus Python 3

The studied functional constructs underwent major and break-
ing changes when moving from Python 2 to Python 3. While
in Python 2 map() and filter() return a list type, in
Python 3 they return an iterator [37]. To guarantee compatibility,
developers must explicitly convert map() and filter()
returned values into a list, e.g.,list(map(...)) or else
use a list comprehension. A further change was to move the
previously built-in reduce() function into the functools
package.

Despite long discussions and several attempts1 to get rid
of lambdas in Python, to date they are still there. However,
Python 3 introduced a change with respect to Python 2, i.e.,
a lambda accepting multiple parameters is no longer able
to accept a tuple and unpack it over the parameters instead.
Specifically, a Python 2 lambda (x,y) : x+2*y needs
to be transformed into lambda a : a[0]+2*a[1], i.e.,
the unpacking is explicitly performed on the right-hand side.
Then, both can be invoked by passing a tuple of two elements.

III. STUDY DESIGN

The goal of this study is to investigate whether changes
to Python functional constructs—and specifically lambdas,
comprehensions, and map/reduce/filter functions—have more
chances to induce fixes than other changes. The quality focus

1https://mail.python.org/pipermail/python-dev/2006-February/060415.html

is the software fault-proneness, which may be influenced by
the use of such programming constructs. The perspective is
that of researchers and practitioners aiming to understand the
downside of using functional constructs. The context accounts
for 200 open-source Python projects hosted on GitHub.

The study addresses the following three research questions:
• RQ1: To what extent do changes involving functional

constructs induce more fixes than other changes? We
aim to provide the “overall” answer to our study goal, by
looking at whether changes involving functional constructs
have higher odds of inducing fixes than other changes.

• RQ2: How do the odds to induce fixes vary between
additions of functional constructs and their update? We
investigate whether changes adding functional constructs
are more likely to induce fixes than changes simply
altering them. The conjecture we would like to verify
is whether functional constructs tend to be “born defect-
prone” and also whether changes made to them still induce
further fixes.

• RQ3: How does the fault-inducing proneness vary among
different types of functional constructs? We are interested
in verifying whether developers may experience different
levels of difficulty when using different types of functional
constructs, namely lambda functions, dictionary/list/set
comprehensions, and filter/map/reduce functions.

A. Context Selection

We answer our research questions by mining the change
history of 200 open-source Python projects hosted on GitHub
and selected through the following procedure.

We relied on an existing dataset of engineered software
projects made available by Munaiah et al. [35] by selecting
only the ones mainly written in Python and classified as
“engineered” by their Random Forest approach (which achieves
82% precision and 86% recall). For each engineered project,
we used the GitHub API [1] to extract meta-data, and filter out
projects that do not exist/are not accessible anymore. We also
filtered out forks and projects with less than 100 commits, as
we wanted to analyze projects with enough evolution history.
To avoid biasing our results, we did not look at the presence
of functional constructs in the chosen projects beforehand.

We ended up with a set of 6,509 projects, which we ranked
by forks and manually selected the top 200 projects satisfying
the following three criteria: (i) the project is not a tutorial,
book code, or code examples, (ii) the project has its commit
history and issues descriptions mostly written in English, and
(iii) the project has at least one commit in the last year (from
January to December 2021). The selected projects have a size
(in NLOC) between 1k and 987k (median 18k). The complete
list of projects is available in our online appendix [52].

B. Data Extraction

Once repositories of the projects described in Section III-A
have been cloned, we analyzed their evolution history to identify
(i) changes to functional constructs, and (ii) bug fixes, and
fix-inducing changes. Finally, we combined the two pieces of

information to perform the analysis of the results described in
Section III-C. The analysis has been performed by considering
all commits of all branches, excluding merge commits.

1) Analysis of Changes to Functional Constructs: One
option to analyze Python changes would have been to lever-
age Gumtree [13]. Although this is the state-of-the-art for
AST-based, fine-grained differencing analysis, for Python it
leverages the pythonparser module [12], which suffers from
two limitations: (i) it cannot parse Python 2 source code, and
(ii) its AST nodes fail to properly distinguish comprehensions
from regular lists/dictionaries. A much better parsing option for
our purposes is the Python 3.10 Abstract Syntax Tree (AST)
module [38], which was used in our work.

We parsed each Python file and then traversed its parse tree
extracting relevant nodes. Each AST node is decorated with
information including the beginning and ending line/column.
Furthermore, each call node, of type ast.Call, contains an
ast.Name node to store the identifier of the called object,
i.e.,id, and, if needed, the passed arguments. Specifically,
dictionary/list/set comprehension and lambda constructs are
explicitly represented as AST nodes, i.e., the AST features
the ast.DictComp, ast.ListComp, ast.SetComp
and ast.Lambda nodes. Filter, map, and reduce
functions, instead, are call nodes (ast.Call) whose id is
equal to filter, map, or reduce.

The extraction process has been performed on all Python
files being modified in each commit and, for each of them,
we stored the file name, the hash of the commit together with
its date, as well as the list of functional constructs identified
together with their location, i.e., beginning and ending lines.

For each commit, Python files have been parsed in their
version before and after the commit. If a file was added,
all functional constructs identified are considered as added.
Similarly, if a file was removed, its functional constructs were
considered as removed.

For file changes, we relied on the git context diff to identify
churns of code being modified with no surrounding context
(i.e., we set the context parameter to zero), as well as to trace
source code lines between the two different versions of the file.
Knowing the starting and ending location for each functional
construct, as well as the starting and ending location of each
code churn being modified in a commit, whenever a functional
construct is involved in a change, given the two file versions,
we consider the following three cases:

• if the construct appears in both versions and its lines have
been changed, we conclude that the functional construct
is modified;

• if the construct appears only in the first version, then we
consider it as deleted; and

• similarly, if the construct appears only in the second
version, we consider it as added.

The approach does not distinguish semantic-altering changes
from semantic preserving changes (e.g., refactoring). Therefore,
we may detect irrelevant changes [30]. In our qualitative
analysis (Section V), we discuss a sample of such cases.

TABLE I
SUMMARY OF THE TYPE OF CHANGES TO THE FUNCTIONAL CONSTRUCTS

OBJECT OF THE STUDY.

Metric Value Q1 Median Q3

map

All 3 20 78
Addition 2 9 31
Update 0 4.5 21
Removal 0 2.5 9

reduce

All 0 0 2
Addition 0 0 0
Update 0 0 0
Removal 0 0 0

filter

All 0 4 13.5
Addition 0 2 5
Update 0 0 3
Removal 0 0 1

List comp.

All 74 237 745
Addition 34 99 281.5
Update 18 66 241
Removal 12 32.5 90

Set comp.

All 0 0 2
Addition 0 0 0
Update 0 0 0
Removal 0 0 0

Dict comp.

All 0 6 28
Addition 0 2 10
Update 0 0 3.5
Removal 0 0 2

Lambdas

All 37.5 168 468
Addition 18 63 171
Update 8 27 135
Removal 5 18 52

Table I reports descriptive statistics (first, second and
third quartile) of changes involving functional constructs
affecting the studied projects. Note that the “All” line does
not discriminate between the type of change, i.e., addition,
update, and removal. As it can be seen, changes related to
some constructs such as reduce, filter, set and dictionary
comprehensions are rare. They are less used especially in
recent Python versions (where reduce is even in a separate
package), while comprehensions are more common for lists
than for dictionaries and sets.

2) Analysis of Fix-Inducing Changes: The fix-inducing
analysis has been performed by leveraging a lightweight version
of the SZZ algorithm [43], similarly to what has been done
in previous work analyzing the relationship between code
naturalness and defects [42]. This is because, differently from
Java—where other authors have identified curated projects
properly handling defects through an issue tracker [11]—we
noticed that Python projects make an inconsistent usage of
issue trackers, and often contain fixes not even linked to the
issue tracker. At the same time, we could have limited our
attention to the subset of fixes explicitly linked, but this could
have possibly biased the dataset [8].

For this reason, we decided to rely on a simpler, lightweight
identification of fix commits, i.e., we limited our attention to
commits whose message matches the following regular expres-
sion: “\b(fix|fixed|fixing|fixes|bugs?)\b” (\b stands for

matching word boundaries).
Once fix commits have been identified, our analyzer deter-

mines fix-inducing commits by leveraging PyDriller features
and the Unix git blame (applied to the lines affected by
the fix). In doing so, we discard changes only involving white
spaces, as well as changes to commented lines. Through
the git blame -p (porcelain option), we also handle file
renaming and we map line numbers between inducing and
fixing changes. For each changed line belonging to fixed Python
files, we obtain a candidate introduction location, i.e., commit,
file name, and line number.

While some studies on SZZ suggest not considering the first
commit of a file [10], in our study we intentionally decided to
not do so, as we are also interested to investigate the extent
to which functional constructs created in the first file instance
are subject to fixes.

3) Combining Functional Changes and Fix-Inducing
Changes: As the last step of our analysis, we combine the two
aforementioned analyses, i.e., changes to functional constructs
and fix-inducing changes. Given a change in a commit, we
identify (i) whether it induces a fix, and if yes, which lines
of the churn induce the fix, (ii) whether the churn contains a
change to functional constructs, and if yes which ones, and
whether the construct was added or modified, and (iii) whether
the functional construct change and the fix-inducing change
occur on the same line.

C. Analysis Methodology

In the following, we describe the methodology adopted to
address the research questions of the study.

To address RQ1, we compare the proportion of fix-inducing
changes involving functional constructs with those not involving
functional constructs. The latter has been done following a
methodology similar to a previous work analyzing the extent
to which refactoring induces a fix [11], except that we operate
at a finer-grained level of detail. Specifically, the analysis has
been performed at the granularity of changes, i.e., consecutive
lines changed in a source code file. Therefore, we divide the
changes into the following groups:

1) The churn affects a functional construct and induces a fix;
2) The churn affects a functional construct and does not

induce a fix;
3) The churn does not affect a functional construct, but

induces a fix; and
4) The churn does not affect a functional construct nor it

induces a fix.
Then, we compare the proportions of (1) over (2) and (3) over

(4) using Fisher’s exact test [15], and determine the Odds Ratio
(ORs) effect size. An odd is the ratio between the probability of
an event to occur (inducing a fix in our case), and its probability
of not occurring (not inducing a fix). The OR, instead, is the
ratio between the odd of the experimental group (changes to
functional constructs) and the control group (other changes).

The first part of the analysis considers the two events
(addition/change of a functional construct, and inducing a fix)
co-occurring if they happen in the same change. This means

that one could change a functional construct in a line, although
a neighboring-changed line has induced a fix. The rationale
is that we would like to analyze the fix-inducing effect of
the whole changed fragment, i.e., while one was changing a
functional construct, the fix was induced.

Since the two events could still be uncorrelated, we restrict
the analysis by looking at whether the change to the functional
construct and the fix-inducing change occur on the same line,
and recompute the Fisher’s test results and the ORs. In this case,
(1) becomes “the churn has affected functional construct(s) and
induced a fix on the same line where the functional construct
was/were changed”, while (3) becomes “the churn has induced
a fix, but either it has not affected a functional construct or if
so, this happened on a different line than the fix”.

While the aforementioned analysis could be enough for
addressing RQ1, there could be confounding factors influencing
the odds a change has to induce a fix. Among others, we
consider the change size, since previous literature [31] points
out that a large change has higher odds to induce a fix. Of
course, there could be many further metrics, and in general
factors, that we do not consider as part of this study, as
discussed in Section VI.

To consider this effect, we build a binominal, mixed-effect
generalized linear model. This model relates a dichotomous
dependent variable (whether a change induces a fix), with
independent variables, i.e., the churn size (in LOC) and whether
the change affected a functional construct, along with the
interaction between the two independent variables. Also, the
model considers the project as a random effect, to separate the
peculiar characteristics of a project from the effect produced
by the investigated factor. The model has been built using the
glmer function from the R [39] lme4 package [4]. The model
reports: (i) fitting indicators, i.e., Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), log likelihood,
deviance and degree of freedom of residuals; (ii) statistics for
scaled residuals, (iii) variance and standard deviation for the
random effects, and (iv) estimate, standard error, z-value and
p-value for the fixed effects. The mixed-effect model involves
multiple comparisons, therefore we adjusted p-values using the
Benjamini-Hochberg correction [6].

To address RQ2, we look at whether a change has involved
(i) the addition of new functional constructs, and/or (ii) the
revisions to existing functional constructs. Similarly to RQ1,
we leverage a mixed-effect model to determine whether a
fix-inducing change is correlated with additions, changes, as
well as their interaction with the change size. In this context,
controlling the effect of size is particularly important, as some
additions may tend to be larger than modifications.

For RQ3, we analyze how the fix-inducing-proneness varies
among different types of functional constructs. Also in this
case, we use a mixed effect model that considers whether
a change is fix-inducing as the dependent variable, and as
independent variables whether the change involved the three
types of functional constructs (lambdas, comprehensions, or
map/reduce/filter functions).

TABLE II
RQ1 : FISHER’S EXACT TEST AND ODDS RATIO BETWEEN CHANGES AND

FIX-INDUCING CHANGES.

p−value OR Conf. Int.
CHURN-LEVEL <0.001 2.23 [2.18, 2.28]
LINE-LEVEL <0.001 1.15 [1.12, 1.18]

TABLE III
RQ1 : MIXED-EFFECT LOGISTIC REGRESSION RELATING CHANGES TO

FUNCTIONAL CONSTRUCTS, CHANGE SIZE, AND THEIR INTERACTION WITH
FIX-INDUCING CHANGES.

AIC BIC logLik deviance df.residuals
1,188,360.7 1,188,428.4 -594,175.3 1,188,350.7 5,659,731

SCALED RESIDUALS:
Min 1Q Median 3Q Max

-0.695 -0.182 -0.124 -0.071 40.513
RANDOM EFFECTS:
Groups Variance Std.Dev.
Project (Intercept) 1.37 1.171
Number of obs: 5,659,736, Groups: Project: 200
FIXED EFFECTS:

Estimate Std.Error z value Pr(>|z|)
(Intercept) -4.39 0.08 -52.63 <0.001

Func. 0.59 0.03 22.26 <0.001
Churn Size 0.12 0.001 81.10 <0.001

Func:Churn Size -0.078 0.008 -9.93 <0.001

IV. STUDY RESULTS

This section discusses the results for the defined RQs.

A. RQ1: To what extent do changes involving functional
constructs induce more fixes than other changes?

To address RQ1, we compare the proportion of fix-inducing
changes occurring in commits adding/modifying functional con-
structs versus other changes, discriminating between whether
the overlap occurs at churn(s) or line(s) level.

Table II reports the results of Fisher’s exact test, as well
as the ORs and their confidence interval, considering data
from all the studied Python projects. An OR greater than one
indicates that a commit where a functional construct is added
or modified has higher odds than other commits to induce a
bug. As shown in the first line of Table II, commits introducing
or changing a functional construct have significantly higher
odds (OR = 2.23) to induce a bug than other changes.

If we consider that a functional construct induces a bug only
if a line where it has been introduced/modified is also modified
in a bug-fixing commit, the OR is reduced to 1.15. This means
that changes to functional constructs still have higher odds to
be directly responsible for fixes than other changes, yet the
odds substantially decreases. The higher OR for the churn-level
overlap may indicate a high proneness to the code surrounding
functional constructs (regardless of the specific line) to be
subject to induce fixes.

Despite what observed above, it is still possible that higher
odds could be due to other reasons. Above all, larger changes
may be more likely to induce fixes than smaller ones. For this
reason, we have evaluated whether, even in the presence of the
“size” effect, i.e., the number of lines of code being modified
in the commit, commits dealing with functional constructs

TABLE IV
RQ2 : MIXED-EFFECT LOGISTIC REGRESSION RELATING THE TYPE OF

CHANGE TO FUNCTIONAL CONSTRUCTS (ADDITION/CHANGE) WITH
FIX-INDUCING CHANGES.

AIC BIC logLik deviance df.residuals
1,487,823.4 1,487,878.0 -743,907.7 1,487,815.4 6,158,991

SCALED RESIDUALS:
Min 1Q Median 3Q Max

-1.010 -0.202 -0.132 -0.084 32.618
RANDOM EFFECTS:
Groups Variance Std.Dev.
Project (Intercept) 1.253 1.119
Number of obs: 6,158,995, Groups: Project: 200
FIXED EFFECTS:

Estimate Std.Error z value Pr(>|z|)
(Intercept) -3.90 0.08 -49.077 <0.001

Added Func. 1.15 0.01 80.43 <0.001
Changed Func. 0.24 0.02 13.73 <0.001

correlate with fix-inducing changes. Table III reports the results
of the binomial mixed-effect logistic regression, considering the
project as a random effect and considering functional changes,
change sizes, and their interaction as independent variables.

Results point out that the change to functional construct,
the change size, and their interaction have a statistically
significant effect on the probability that the change induces
a fix. Specifically, by observing the estimates, the presence
of a change impacting a functional construct increases by
e0.59 = 1.80 times the odds that a commit induces a fix, while
a unit increment of the change size increases the odds by
e0.12 = 1.13. In other words, a change involving ' 6 lines
would have the same odds to induce a fix as a single change to
a functional construct. Finally, the interaction between changes
to functional constructs and change size has a very small
estimate.

RQ1 Summary: Changes dealing with functional con-
structs have higher odds of inducing a fix than other
changes, even if at line-level granularity the effect size is
reduced. When controlling for “size”, changes to functional
constructs still play a significant role in inducing fixing
activities.

B. RQ2: How do the odds to induce fixes vary between
additions of functional constructs and their update?

Table IV reports the results of the mixed-effect logistic model
used to evaluate whether changes adding functional constructs
are more likely to induce a fix compared to changes simply
modifying them. By looking at the estimates shown in the table,
we can state that functional constructs have higher chances of
being “born defect-prone”. Specifically, a commit introducing
a new functional construct increases by e1.15 = 3.16 times
the odds that the change introduces a bug, while a commit
modifying existing functional construct increments by e0.24 =
1.27 times the odds that the change induces a fix.

These results point out that developers tend to modify exist-
ing functional constructs to fix bugs introduced when adding
functional constructs into the code base. However, it is still
possible that when fixing a bug related to a functional construct,

TABLE V
RQ2 : MIXED-EFFECT LOGISTIC REGRESSION RELATING THE TYPE OF

CHANGE TO FUNCTIONAL CONSTRUCTS (ADDITION/CHANGE), SIZE OF THE
CHANGED CHURN, AND THEIR INTERACTION WITH FIX-INDUCING

CHANGES.

AIC BIC logLik deviance df.residuals
1,188,319.7 1,188,414.5 -594,152.8 1,188,305.7 5,659,729

SCALED RESIDUALS:
Min 1Q Median 3Q Max

-0.733 -0.182 -0.124 -0.071 40.512
RANDOM EFFECTS:
Groups Variance Std.Dev.
Project (Intercept) 1.371 1.171
Number of obs: 5,659,736, Groups: Project: 200
FIXED EFFECTS:

Estimate Std.Error z value Pr(>|z|)
(Intercept) -4.39 0.08 -52.61 <0.001

Added Func. -0.06 0.06 -1.04 0.2997
Churn Size 0.12 0.001 81.32 <0.001

Changed Func. 0.70 0.03 22.73 <0.001
Added Func:Churn Size 0.02 0.01 1.54 0.1510

Churn Size:Changed Func. -0.11 0.01 -9.79 <0.001

or when naturally evolving them, developers introduce new
bugs.

Similar to what has been done for answering RQ1, we have
evaluated the effect of the change size. Note that, before that,
we still preferred to show the model without the size variable,
to highlight the differences.

As shown in Table V, only the change to existing functional
constructs, the change size, and their interaction have a
statistically significant effect on the likelihood that the change
is inducing a fix. In particular, the update of a functional
construct has e0.70 = 2.01 higher odds of inducing a fix, while
a unitary increment in the number of changed lines increases
the odds by e0.12 = 1.13. As it can be seen, when accounting
for the “size”, changes adding new functional constructs are
not statistically significant, likely because additions often occur
in the context of larger changes, and in that case, the “size”
variable already captures the effect.

RQ2 Summary: The addition of new functional constructs
has higher odds of inducing fixes than changes to those
constructs. However, such a higher effect is highly captured
by the change size for changes adding new functional
constructs.

C. RQ3: How does the fault-inducing proneness vary among
different types of functional constructs?

Table VI shows the results of the mixed-effect logistic regres-
sion model performed to check the extent to which the fault
inducing proneness of a change varies among different types of
functional constructs, i.e., lambda functions, list/set/dictionary
comprehensions, and map/reduce/filter functions. In this case,
we do not control for size, as we are simply interested in
comparing the effect (in isolation) of the three types of changes,
regardless of their interaction with other factors.

As the table shows, all three different categories of functional
constructs have a statistically significant correlation with fix-
inducing changes. Changes dealing with lambda functions have
the highest odds of inducing a fix (i.e., OR = e0.98 = 2.66),

TABLE VI
RQ3 : MIXED-EFFECT LOGISTIC REGRESSION RELATING THE TYPE OF

FUNCTIONAL CONSTRUCT WITH FIX-INDUCING CHANGES.

AIC BIC logLik deviance df.residuals
1,488,093.6 1,488,161.7 -744,041.8 1,488,083.6 6,158,990

SCALED RESIDUALS:
Min 1Q Median 3Q Max

-1.111 -0.202 -0.132 -0.084 32.637
RANDOM EFFECTS:
Groups Variance Std.Dev.
Project (Intercept) 1.248 1.117
Number of obs: 6,158,995, Groups: Project: 200
FIXED EFFECTS:

Estimate Std.Error z value Pr(>|z|)
(Intercept) -3.90 0.08 -49.17 <0.001

Comprehensions 0.66 0.02 43.75 <0.001
Lambdas 0.98 0.02 58.40 <0.001

Map/Reduce/Filter 0.28 0.04 7.19 <0.001

followed by changes handling list, set, or dictionary comprehen-
sions, i.e., OR = e0.66 = 1.93, and finally, changes involving
map/reduce/filter functions with an OR = e0.28 = 1.32. This
result is somewhat expected, considering that Python developers
mainly rely on lambda functions and list comprehensions
during their normal development activities, while only rarely
introducing map/reduce/filter functions, as well as set and
dictionary comprehensions (see Table I). Also, although this
needs to be further investigated, it may be that lambdas and
comprehensions have a more complex syntax that makes bug
introduction easier.

RQ3 Summary: The fix-inducing proneness of changes
involving functional constructs varies based on the type of
functional construct being introduced and/or modified, with
changes handling lambda functions having the highest odds
to induce a fix, followed by comprehensions.

V. QUALITATIVE ANALYSIS AND IMPLICATIONS

In the following, we report the results of a qualitative analysis
of a subset of the studied fixes, as well as the study implications.

A. Qualitative Analysis

This qualitative analysis complements the quantitative results
reported in Section IV and has a two-fold goal: (i) validate our
methodology, and (ii) identify and discuss different scenarios
in which functional constructs are changed or removed.

We extracted a statistically significant, randomly stratified
sample (using projects as strata), consisting of 340 out of 2,442
fixes, in which there is a line-level overlap between the change
to the functional construct and the bug fix. The chosen sample
size ensures a confidence interval of ±5% for a confidence
level of 95%.

Each sample was manually analyzed by two independent
annotators (two authors) in two validation steps, to determine
whether the fix is a semantic-altering change involving a func-
tional construct, and added some notes about the change ratio-
nale. For the latter, our aim was not to perform a categorization,
but mainly to identify (i) cases of bulk removal/replacement,
(ii) refactoring or major reformatting not filtered out by the diff,

and (iii) changes in which a functional construct was translated
into a non-functional alternative. During this validation, the
annotators achieved a Cohen’s kappa [9] inter-rater agreement
of 0.63, which can be considered a strong agreement. Finally, all
validation discrepancies have been solved by a third annotator.

In the validated sample, we found 265 cases (78%) in which
the fixes changed, or removed the functional constructs and
altered the program semantics. In 52 such cases, there was a
major code block removal and replacement, i.e., the functional
construct was incidentally removed along with other changes.
This is unsurprising and consistent with previous studies on
software quality, which found that code smells are mainly
removed because the code containing them disappears [49].

Among the cases of specific fixes to functional constructs,
we found several instances in which the construct was changed
either because of various evolutionary needs, developers’
misunderstanding, or (3 cases in our sample) for compatibility
reasons between Python 2 and 3, as discussed in Section II-D.
In this context, we found cases where developers admit their fix
to functional construct in the commit message. Table VII reports
some examples of documented changes to functional constructs,
highlighting that the reasons for such changes are many-fold.
Many of the shown cases concern fixes within the construct,
which could be caused by a misinterpretation/misuse of the
construct itself. For instance, #6 (see Listing 5) shows a list
comprehension misuse being fixed, where the commit message
clearly states that: “The isdir() test must be on the outer
(for d in dirs) scope rather than the inner: otherwise
listdir() may be called with a non-existent directory”.
For comprehensions, we found a change (#4) related to Python
2 compatibility (i.e., dictionary comprehension unsupported),
and a case (#5) in which the fix concerned a filter function,
that has been replaced by a comprehension. Finally, for map,
we found a case (#9) of incompatibility of the used syntax with
Python 3. As shown in Listing 6, because of that, developers
decided to use list comprehensions instead.

Although our sample features 75 (22%) commits in which
we could not confirm a semantics-varying change to functional
constructs, many such cases are very interesting to discuss,
because they might have relevant implications. In particular,
64 out of the semantic-preserving changes fall in the following
cases:

• Various forms of semantically-equivalent changes (38
cases). These include formatting over multiple lines, often
highlighted by tools like flake8 that the space-insensitive
diff -w missed. Those often aim at improving the
understandability of complex lambda or comprehensions.
Also, these include other performance-preserving changes,
e.g., moving a line without altering the program’s seman-
tics, but also changes aimed at improving the program
from a non-functional perspective. A very interesting one
is shown in Listing 7, where a function invocation is
extracted out of a list comprehension, because such a
construct is not optimized for function calls, and this
could cause a performance degradation [45], [50].

TABLE VII
EXAMPLES OF DOCUMENTED FIXES TO FUNCTIONAL CONSTRUCTS.

URL Commit Message
1 https://github.com/tgalal/yowsup/commit/f167600 . . . Fixes #2778 <lambda>() takes 0 positional arguments but 2 were given
2 https://github.com/pyca/cryptography/commit/0d0d70b . . . remove lambda not necessary for dismiss
3 https://github.com/davidhalter/jedi/commit/cd7774f . . . lambda can be used as a default param in function which means there have

been slight changes to the parser to allow that
4 https://github.com/numba/numba/commit/747ac0d fix: python26 compatibility python26 doesn’t like dictionary comprehensions
5 https://github.com/kliment/Printrun/commit/be7a16b Python 3: Replace filter with comprehensions . . .
6 https://github.com/sosreport/sos/commit/4aae08a [fibrechannel] fix list comprehension filter scope . . .
7 https://github.com/getsentry/sentry/commit/d4ee549 Issue #51: chart displaying dates into the future . . . This is also handled with this

changeset by padding the points for every hour as calculated from max_days
parameter to the template filter chart_data.

8 https://github.com/pyqtgraph/pyqtgraph/commit/03c01d3 Fixes related to CSV exporter: . . . removed call to reduce() from exporter
9 https://github.com/HIPS/autograd/commit/9224718 Fix Python 3 incompatibility in table outputter ‘map(...).index()‘ doesn’t work

on Py3, just use a list comprehension instead.

1 devs = [join(d, dev) for d in dirs for dev
in listdir(d) if isdir(d)]

1 devs = [join(d, dev) for d in dirs if isdir
(d) for dev in listdir(d)]

Listing 5. List comprehension misuse example [22]

1 match = lambda key: error_type == key[0]
and len(re.findall(key[1], error_message)
) != 0

2 matches = map(match, keys)

1 matches = [error_type == key[0] and len(re.
findall(key[1], error_message)) != 0 for
key in keys]

Listing 6. Compatibility of map() in Python 3 example [19]

• Refactoring, including for example variable renaming, but
also extracting methods containing a comprehension (16
cases).

• Replacement of functional constructs with non-functional
alternatives or with different ones (10 cases). Besides those
due to Python compatibility (hence semantic changing
for a given Python version), others were performed
for different reasons, including making the code clear.
This includes cases where developers decided to avoid
lambdas (as it is debated a lot among Python developers),
and replace them with explicit functions. For instance,
this happens in Listing 8. Also, there are cases where
comprehensions were translated in other functional con-
structs, e.g., map() as in Listing 9, reduce in list
comprehension with aggregation functions (see Listing 10),
or list comprehensions into loops.

B. Implications

Our study results trigger several implications for developers,
educators, and researchers.

Developers should carefully ponder the use of functional
constructs, balancing syntactic elegance (and shorter code) with
understandability, also knowing that performance may or may
not improve [45], [50]. In some cases, the awareness of given
patterns and antipatterns (e.g., calls within comprehensions
are not optimal) would be desirable. Moreover, developers

1 return [x for x in expr if x in self.
_pki_minions()]

1 minions = self._pki_minions()
2 return [x for x in expr if x in minions]

Listing 7. Avoiding function calls in comprehensions [20]

1 rq = lambda s: s.strip("\"’")

1 def rq(s):
2 return s.strip("\"’")

Listing 8. Lambda removal example [18]

should give high priority to code review (e.g., by using specific
checklists) and testing of functional constructs. For example,
coverage criteria should be applied when testing comprehen-
sions, other than conventional loops and conditionals.

Educators should, on the one hand, give proper emphasis to
the syntax and usage examples of functional constructs, show-
ing typical misuse cases. On the other hand, they should also
discuss the pros and cons of using functional constructs during
development, as to the need for properly reviewing/testing such
code.

Researchers could develop, similar to what was done for
lambdas in Java [47], [16] refactoring tools aimed at supporting
the conversion. Also, automated bug fixing approaches should
focus on typical mistakes occurring when using functional
constructs. Last, but not least, it would be useful to conduct
experiments to assess the understandability of functional
constructs vs. non-functional alternatives.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship between
theory and observation. These threats concern sources of im-
precision in our measurements. As explained in Section III-B2,
given the heterogeneity of Python projects in terms of how
issues are managed, our analysis of fix-inducing commits is
based on fixing information originating from commits only.
Upon interpreting our results, this simply means that we identify
changes inducing “any type of fixes” and not only those traced
in issue trackers and classified as fixed and closed bugs there.
We do not necessarily assume that fixes are related to defect

1 password = [ord(x) for x in list(password)]

1 password = list(map(ord, password))

Listing 9. Replace comprehension with map() example [21]

1 stroke_y = reduce(lambda total, pt: total +
pt.y, stroke.points, 0.0)

2 stroke_x = reduce(lambda total, pt: total +
pt.x, stroke.points, 0.0)

1 stroke_y = sum([pt.y for pt in stroke.
points])

2 stroke_x = sum([pt.x for pt in stroke.
points])

Listing 10. Replace reduce() with comprehensions and aggregation
functions example [17]

fixes, as properly pointed out in related work about issue
misclassification [3], [25].

On the same line, the approach to identifying changes to
functional constructs may be prone to possible imprecision,
and in general, the scripts on which this work is based may be
error-prone. The qualitative analysis described in Section V-A
mitigates this threat, and we have discussed the cases where
the approach fails (e.g., refactoring, or other semantically-
equivalent changes).

Threats to internal validity concern factors internal to
our study that can influence the observed results. First, the
study aims to find a correlation between changes occurring
to functional constructs and fix-inducing changes. We have
complemented our statistical evidence with some qualitative
analysis, as explained in Section V-A. However, through the
achieved results, we cannot claim causation. Also, in some
cases the cause of a fix may be different from what it appears.
For example the migration from one version of Python to
another may generate fixes that seem to be unrelated to that.
Another confounding effect is the change size, and we have
used appropriate models to evaluate its effect. However, proper
care should be taken if using the considered factors (i.e., change
to functional constructs) in predictive models, as they could
correlate with other factors.

Threats to conclusion validity concern the relationship be-
tween experimentation and outcome. We have used appropriate
statistical tests (Fisher’s exact test and mixed-effect models)
and effect size measures (odds ratio). Also, we made sure that p-
values (that are, in any case, very small) are still significant after
adjusting them through Benjamini-Hochberg [6] correction.

Threats to external validity concern the generalizability
of our findings. Our study is intentionally scoped in terms
of programming language (Python) and functional constructs
studied (lambdas, comprehensions, and map/reduce/filter). We
do not know whether the obtained results would generalize
to other programming languages, and above all to other func-
tional programming constructs, such as immutable functions.
Moreover, although the considered sample is relatively large,
results may not generalize to other projects, hence replications
are desirable.

Threats to reliability validity concern the extent to which the

obtained findings can be reproduced. We are making available
the analysis scripts and working datasets, other than providing
full details about the data extraction and analysis procedures.

VII. RELATED WORK

This section discusses related work about (i) studies on
functional programming, and approaches to support functional
programming, and (ii) studies about fix-inducing features in
programs.

A. Studies on Functional Programming

After Java introduced lambdas in its release 8, researchers
started investigating how developers rely on lambda expressions
and functional operations (e.g., map and filter), given their
ability to enable parallelism and make the code more succinct
and readable. Tanaka et al. [46] show that lambda is the most
accepted function idiom in Java (16%). A related study was
performed on Python by Rao and Chimalakonda [41], who
found that 78.57% of open-source Python projects have at
least one lambda expression in their code, mainly introduced
for replacing functions, anonymous classes, iterators in built-
in libraries, and for using the same function for multiple
purposes. Alexandru et al. [2] conducted, through interviews,
a study on the usage of Pythonic idioms, including functional
constructs. The study points out how developers with different
experience have a different perception of Pythonic idioms in
terms of support for improving source code understandability
and performance. Their study also analyzes, on a sample of
1,000 projects, the usage of Pythonic constructs, and indicate
that constructs also considered in our study (in particular
comprehensions and lambdas) are largely used in Python
programs.

Lucas et al. [33] conducted an in-depth study to evaluate
the effect of introducing lambda expressions on program
comprehension. By looking at 66 pairs of real code snippets
before and after the introduction of lambda expressions, and
measuring code readability, they did not find evidence that
the introduction of lambdas improves software readability.
However, by surveying software practitioners, they found that
the introduction of lambda expressions improves program
comprehension. Using a different approach, Hanenberg and
Mehlhorn [24] evaluated the readability of lambdas in com-
parison to anonymous inner classes (AICs) in Java, showing
that lambdas without type annotations are more readable than
AICs.

Zheng et al. [53], investigated the extent to which the usage
of lambdas in Java programs can be significantly compromised
by collateral side effects, e.g., memory leaks or efficiency issues.
First of all, they pointed out that lambda deletion is increasing
year by year, with lambdas built on top of customized functional
interfaces having more chances of being removed. Furthermore,
the introduction of performance degradation, together with poor
readability of the code (e.g., long body or complex logic) are
the more predominant reasons why developers tend to remove
lambdas and replace them with imperative constructs, method
references, or anonymous objects for better extensibility.

While the aforementioned studies focus on lambdas/func-
tional constructs usage and effects on comprehension, we focus
on their fault-proneness, although the two phenomena (i.e., low
understandability and fix-inducing changes) may be interrelated.

From a different perspective, Gyori et al. [23], proposed
an approach, LambdaFicator [16], integrated with the Net-
Beans IDE, aimed at converting imperative code to functional
code using lambdas, and evaluated it on nine open-source
Java projects. LambdaFicator automates two refactoring
types, i.e., converting (i) anonymous inner classes to lambda
expressions, and (ii) for loops iterating over collections to
functional operations relying on lambdas. Finally, Tsantalis
et al. [47] showed how lambdas can be used to refactor code
clones having behavioral differences.

The qualitative analysis we have performed shows that
functional constructs are indeed subject to refactoring, although
we observed several cases of functional construct removal, e.g.,
translating lambdas to functions or comprehensions to loops.

B. Studies on Fix-Inducing Changes

Among other applications, the SZZ algorithm has been
used to conceive just-in-time defect prediction approaches,
i.e., approaches aimed at leveraging features in fix-inducing
changes (as opposed to features in other changes) to build
defect prediction models able to indicate whether a change is
likely to induce a fix. A seminal work in this area is the one
by Kim et al. [31], which achieved 78% accuracy and 65%
recall. Further work in this area has been proposed by several
authors [26], [28], [29], [34]. While our aim is not to directly
create defect prediction models, we at least use one major
prediction of bugginess (i.e., the change size) as a co-factor to
be controlled.

A general study on fix-inducing constructs has been per-
formed by Ferzund et al. [14]. They analyzed 8 projects relying
on three different programming languages, i.e., C, C++ and
Java, and identified different kinds of fix-inducing constructs
(e.g., function calls, pointer references, or null constants) which
do not include, however, a specific analysis on functional
constructs as we did.

Ray et al. [42] have studied the correlation between fix-
inducing changes and code naturalness. They found that fix-
inducing changes are more likely to be introduced by unnatural
code than by natural code. While our goal is different, we
use an approach similar to what they used for identifying
fix-inducing changes. Bavota et al. [5] and then Di Penta
et al. [11] have studied, at different levels of granularity, the
relationship between refactoring and fix-inducing changes. We
use an analysis procedure very similar to what they have
used, although we analyze different changes, i.e., to function
constructs instead of refactoring. Palomba et al. [36] leveraged
the SZZ algorithm to perform a fine-grained analysis on
the relationship between faults and code smells, determining
whether fixes are actually induced when the source code was
already smelly. They found that while there is a significant
correlation between the presence of code smells and classes’
fault proneness, the analysis performed was not able to identify

a clear causation relationship. On the same line, Lenarduzzi
et al. [32] studied whether SonarQube warnings induce fixes,
finding that the “harmfulness” of many such warnings is low.

Finally, researchers also looked at developer-related factors.
These include ownership (i.e., single-author code appears to be
riskier than code shared across multiple authors [40]), the (lack
of) developers’ communication [7], developers’ experience [48],
and sentiment [27]. It is possible that developer-related factors
could interact with the use of specific programming constructs.
However, a deeper investigation of this would be part of our
future work agenda.

VIII. CONCLUSION

This paper discusses the results of an empirical study aimed
at analyzing the extent to which changes to three types of
Python functional constructs—i.e., lambda functions, dictio-
nary/list/set comprehensions, and map/reduce/filter functions—
have higher odds to induce fixes than other changes.

To this aim, we analyzed the evolutionary history of 200
engineered, highly-forked open-source projects hosted on
GitHub. Results of the study highlight that:

1) Changes affecting functional constructs have more than
twice higher odds to induce fixes than other changes,
while the odds increase is reduced to 15% if we only
consider fixes impacting the same line(s) of the functional
construct. Also, a change involving functional constructs
has the same odds of inducing fixes as the addition/change
of ' 6 lines of code.

2) When a new functional construct is added, this induces
fixes with higher odds than when it is modified. However,
this highly depends on the change size.

3) Lambdas have higher odds to induce fixes, followed by
comprehensions, whereas the effect of map/reduce/filter
functions is more limited.

4) A qualitative analysis of the results revealed different
scenarios in which functional constructs have been fixed.
These include not only cases in which the construct syntax
and content (e.g., a comprehension loop/condition) have
been changed because of a previous misunderstanding or
in general in the context of a bug fix, but also changes
due to Python version compatibility. Moreover, we also
found cases in which developers decide to move from one
functional construct toward an alternative one, or to get
rid of it, writing a non-functional alternative solution.

Future work aims at exploring the effect of other func-
tional programming constructs (e.g., immutability). This would
require suitable program analysis tools. Also, we plan to
investigate the effect of functional constructs on program
understanding. Last, but not least, we would like to conceive
developers’ support to ease the usage of functional constructs,
avoid mistakes, and automatically fix recurring bugs.

ACKNOWLEDGMENTS

Di Penta and Zampetti acknowledge the Italian “PRIN 2021”
project EMELIOT “Engineered MachinE Learning-intensive
IoT systems”.

REFERENCES

[1] “GitHub REST API https://docs.github.com/en/rest (last access:
03/22/2022.”

[2] C. V. Alexandru, J. J. Merchante, S. Panichella, S. Proksch, H. C. Gall,
and G. Robles, “On the usage of pythonic idioms,” in Onward! ACM,
2018, pp. 1–11.

[3] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify change
requests,” in Proceedings of the 2008 conference of the Centre for
Advanced Studies on Collaborative Research. IBM, 2008, p. 23.

[4] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-
effects models using lme4,” Journal of Statistical Software, vol. 67, no. 1,
pp. 1–48, 2015.

[5] G. Bavota, B. D. Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in 12th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2012, Riva del Garda, Italy, September 23-24,
2012, 2012, pp. 104–113.

[6] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[7] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, and D. Distante,
“The relation between developers’ communication and fix-inducing
changes: An empirical study,” J. Syst. Softw., vol. 140, pp. 111–125,
2018. [Online]. Available: https://doi.org/10.1016/j.jss.2018.02.065

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. T.
Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in Proceedings of
the 7th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2009, Amsterdam, The Netherlands, August 24-28,
2009, 2009, pp. 121–130.

[9] J. Cohen, “A coefficient of agreement for nominal scales,” Educ Psychol
Meas., 1960.

[10] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E.
Hassan, “A framework for evaluating the results of the SZZ approach
for identifying bug-introducing changes,” IEEE Trans. Software Eng.,
vol. 43, no. 7, pp. 641–657, 2017.

[11] M. Di Penta, G. Bavota, and F. Zampetti, “On the relationship between
refactoring actions and bugs: a differentiated replication,” in ESEC/FSE

’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020, 2020, pp. 556–567. [Online]. Available:
https://doi.org/10.1145/3368089.3409695

[12] J. Falleri and H. Ham, “Gumtree pythonparser module https://github.
com/GumTreeDiff/pythonparser (last access: 03/10/2022).”

[13] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: https://doi.org/10.1145/2642937.2642982

[14] J. Ferzund, S. N. Ahsan, and F. Wotawa, “Bug-inducing language
constructs,” in 16th Working Conference on Reverse Engineering, WCRE
2009, 13-16 October 2009, Lille, France, 2009, pp. 155–159. [Online].
Available: https://doi.org/10.1109/WCRE.2009.40

[15] R. A. Fisher, “On the interpretation of chi-square from contingency
tables, and the calculation of p,” Journal of the Royal Statistical Society,
vol. 85, no. 1, pp. 87–94, 1922.

[16] L. Franklin, A. Gyori, J. Lahoda, and D. Dig, “LAMBDAFICATOR: from
imperative to functional programming through automated refactoring,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 1287–1290.

[17] Github.com, “kivy/kivy commit: da2162a,” https://github.com/kivy/kivy/
commit/da2162a, 2011, (Last access: 30/03/2022).

[18] ——, “celery/django-celery commit: a45011,” https://github.com/celery/
django-celery/commit/a45011, 2016, (Last access: 30/03/2022).

[19] ——, “Hips/autograd commit: 9224718,” https://github.com/HIPS/
autograd/commit/9224718, 2016, (Last access: 30/03/2022).

[20] ——, “saltstack/salt commit: 1a9f03a,” https://github.com/saltstack/salt/
commit/1a9f03a, 2017, (Last access: 30/03/2022).

[21] ——, “saltstack/salt commit: 3df886d,” https://github.com/saltstack/salt/
commit/3df886d, 2017, (Last access: 30/03/2022).

[22] ——, “sosreport/sos commit: 4aae08a,” https://github.com/sosreport/sos/
commit/4aae08a, 2018, (Last access: 30/03/2022).

[23] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing the gap from
imperative to functional programming through refactoring,” in Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013,
B. Meyer, L. Baresi, and M. Mezini, Eds. ACM, pp. 543–553.

[24] S. Hanenberg and N. Mehlhorn, “Two n-of-1 self-trials on readability dif-
ferences between anonymous inner classes (aics) and lambda expressions
(les) on Java code snippets,” Empirical Software Engineering, vol. 27,
no. 2, pp. 1–39, 2022.

[25] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in Software Engineering &
Management 2015, Multikonferenz der GI-Fachbereiche Softwaretechnik
(SWT) und Wirtschaftsinformatik (WI), FA WI-MAW, 17. März - 20. März
2015, Dresden, Germany, 2015, pp. 103–104.

[26] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, 2019, pp.
34–45. [Online]. Available: https://doi.org/10.1109/MSR.2019.00016

[27] S. F. Huq, A. Z. Sadiq, and K. Sakib, “Understanding the effect of
developer sentiment on fix-inducing changes: An exploratory study on
github pull requests,” in 2019 26th Asia-Pacific Software Engineering
Conference (APSEC), 2019, pp. 514–521.

[28] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using
cross-project models,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2072–2106,
2016. [Online]. Available: https://doi.org/10.1007/s10664-015-9400-x

[29] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Software Eng., vol. 39, no. 6, pp. 757–773,
2013. [Online]. Available: https://doi.org/10.1109/TSE.2012.70

[30] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011, 2011, pp. 351–360. [Online]. Available:
https://doi.org/10.1145/1985793.1985842

[31] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean
or buggy?” IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181–196,
2008.

[32] V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi, “Are sonarqube
rules inducing bugs?” in 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2020, London,
ON, Canada, February 18-21, 2020, 2020, pp. 501–511. [Online].
Available: https://doi.org/10.1109/SANER48275.2020.9054821

[33] W. Lucas, R. Bonifácio, E. D. Canedo, D. Marcílio, and F. Lima, “Does
the introduction of lambda expressions improve the comprehension of
Java programs?” in Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, 2019, pp. 187–196.

[34] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
A longitudinal case study of just-in-time defect prediction,” IEEE Trans.
Software Eng., vol. 44, no. 5, pp. 412–428, 2018. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2693980

[35] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[36] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation,” Empir. Softw.
Eng., vol. 23, no. 3, pp. 1188–1221, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9535-z

[37] Python.org, “Python 3.0 - what’s new https://docs.python.org/3.0/
whatsnew/3.0.html (last access: 03/10/2022).”

[38] ——, “Python AST module https://docs.python.org/3/library/ast.html
(last access: 03/10/2022).”

[39] R Core Team, R: A Language and Environment for Statistical Computing,
2012, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.org

[40] F. Rahman and P. T. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu ,
HI, USA, May 21-28, 2011, 2011, pp. 491–500.

[41] A. E. Rao and S. Chimalakonda, “An exploratory study towards
understanding lambda expressions in Python,” in Proceedings of the
Evaluation and Assessment in Software Engineering, 2020, pp. 318–323.

[42] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. T.
Devanbu, “On the "naturalness" of buggy code,” in Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, 2016, pp. 428–439. [Online].
Available: https://doi.org/10.1145/2884781.2884848

[43] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 International Workshop on Mining
Software Repositories, MSR 2005, Saint Louis, Missouri, USA, May 17,
2005, 2005.

[44] D. Spadini, M. F. Aniche, and A. Bacchelli, “Pydriller: Python
framework for mining software repositories,” in Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, G. T.
Leavens, A. Garcia, and C. S. Pasareanu, Eds. ACM, 2018, pp.
908–911. [Online]. Available: https://doi.org/10.1145/3236024.3264598

[45] Switowski.com, “For loop vs. list comprehension https://switowski.com/
blog/for-loop-vs-list-comprehension (last access: 03/10/2022).”

[46] H. Tanaka, S. Matsumoto, and S. Kusumoto, “A study on the current
status of functional idioms in Java,” IEICE Transactions on Information
and Systems, vol. 102, no. 12, pp. 2414–2422, 2019.

[47] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactoring with
lambda expressions,” in Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May

20-28, 2017, S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE /
ACM, 2017, pp. 60–70.

[48] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto,
and A. De Lucia, “An empirical study on developer-related factors
characterizing fix-inducing commits,” J. Softw. Evol. Process., vol. 29,
no. 1, 2017. [Online]. Available: https://doi.org/10.1002/smr.1797

[49] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De
Lucia, and D. Poshyvanyk, “When and why your code starts to
smell bad (and whether the smells go away),” IEEE Trans. Software
Eng., vol. 43, no. 11, pp. 1063–1088, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2653105

[50] N. Vandeput, “List comprehensions vs. for loops: It
is not what you think https://towardsdatascience.com/
list-comprehensions-vs-for-loops-it-is-not-what-you-think-34071d4d8207
(last access: 03/10/2022).”

[51] Wikipedia, “List of programming languages by type https://en.wikipedia.
org/wiki/List_of_programming_languages_by_type#Impure (last access:
03/10/2022).”

[52] F. Zampetti, F. Belias, C. Zid, G. Antoniol, and M. Di Penta, “Dataset
of the paper "An Empirical Study on the Fault-Inducing Effect of
Functional Constructs in Python",” Mar. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6396698

[53] M. Zheng, J. Yang, M. Wen, H. Zhu, Y. Liu, and H. Jin, “Why do
developers remove lambda expressions in Java?” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 67–78.

