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Abstract—Continuous Integration and Delivery (CI/CD)
pipelines entail the build process automation on dedicated ma-
chines, and have been demonstrated to produce several advan-
tages including early defect discovery, increased productivity, and
faster release cycles. The effectiveness of CI/CD may depend on
the extent to which such pipelines are properly maintained to
cope with the system and its underlying technology evolution,
as well as to limit bad practices. This paper reports the results
of a study combining a qualitative and quantitative evaluation
on CI/CD pipeline restructuring actions. First, by manually
analyzing and coding 615 pipeline configuration change commits,
we have crafted a taxonomy of 34 CI/CD pipeline restructuring
actions, either improving extra-functional properties or changing
the pipeline’s behavior. Based on such actions, we have developed
a metric extractor for Travis-CI pipelines, which extracts 16
indicators of how a pipeline evolves. The analysis of the pipeline
evolution for 4,644 projects using Travis-CI and developed in 8
programming languages shows how some pipeline components,
such as jobs and steps tend to change more often than others,
but also the Docker adoption by the projects increases over time.

Index Terms—Continuous Integration and Delivery; Restruc-
turing; Empirical Study

I. INTRODUCTION

Continuous Integration (CI) [18], [21] aims at automating
the build process on dedicated servers, with the goal of early
error discovery [19], [26], [46], as well as of an overall quality
assessment and improvement. For such reasons, CI is quite
adopted in industry [22] and open source [32]. Its evolution,
Continuous Delivery (CD), helps to accomplish short cycle
releases [16], [34]. Previous empirical research has indicated
how CI/CD allows for early discovery of defects [32], increases
developer productivity [48] and speeds up release cycles [26].

Previous work has also indicated challenges and barriers
in CI/CD adoption [31] implying that setting up a CI/CD
pipeline is not an easy task. Moreover, CI/CD can be wrongly
applied, and this may limit its effectiveness and may introduce
maintainability problems, as it has been highlighted in several
catalogs of CI/CD bad practices [27], [34], [53].

Like any piece of software, CI/CD pipelines undergo
evolutionary changes because of several reasons, for example:

• bad practices have been adopted when setting up the
pipeline (detected also thanks to existing smell detection
approaches [29], [49], [50]), and they need to be avoided;

• the pipeline becomes hard to maintain and understand,
and therefore a restructuring activity is needed;

• some parts of the pipelines become unnecessary and can
be removed, or some others (e.g., testing environments)
become obsolete and should be upgraded/replaced;

• performance bottlenecks need to be resolved, e.g., by
parallelizing or restructuring some pipeline jobs; or

• in general, the pipeline needs to be adapted to cope with
the evolution of the underlying software and systems,
including technological changes (e.g., changes of archi-
tectures, operating systems, or library upgrades).

We report the results of an empirical qualitative and quanti-
tative study investigating how CI/CD pipelines of open source
projects evolve, and, in particular, the extent to which their
configuration files undergo restructuring actions. We considered
a set of 8,000 non-forked projects from GitHub relying on
the usage of at least one CI/CD infrastructure (i.e., AppVeyor,
Bamboo, Circle-CI, GitLab-CI, Jenkins, Semaphore, Travis-CI,
and Wercker), ordered by their number of forks.

From these projects, we first conduct a qualitative study
on 615 commits, aimed at understanding what kinds of
restructuring or refactoring actions are usually performed on
pipelines. The study resulted in a 3-level catalog of CI/CD
restructuring actions.

Based on the identified restructuring actions, we then develop
a metric extractor for Travis-CI pipelines, which extracts 16
different metrics, including, for example, the total number of
jobs, the number of jobs that are allowed to fail, the type
of notification mechanism being explicitly set, or the phases
and their configuration inside the pipeline. Then, we use the
metric extractor to analyze the evolution (253,492 commits) of
4,644 projects out of the initial set of 8,000, limiting to those
using Travis-CI and having at least a commit modifying the
pipeline configuration file and 100 commits from the Travis-CI
adoption. We report and discuss the extent to which CI/CD
pipelines change over time in terms of the identified metrics.

Finally, we show how the extracted metrics can be used as
possible indicators of the restructuring actions in our catalog.
The monitoring of the pipeline evolution can be not only used
by developers to monitor it and trigger possible restructuring
activities, but also as training material for recommenders aimed
at automatically restructuring the pipeline.

II. STUDY DESIGN

The goal of this study is to qualitatively and quantitatively
investigate the extent to which CI/CD pipelines of open source



TABLE I
DISTRIBUTION OF PROJECTS USING EACH CI/CD INFRASTRUCTURE BY

PROGRAMMING LANGUAGE
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C 197 103 72 – 1 898 1
C++ 322 152 50 – – 861 3
C# 655 104 18 – 1 399 2
Java 45 138 16 2 1 904 5
JavaScript 91 199 5 2 – 852 3
PHP 53 152 13 1 – 931 –
Python 97 180 17 4 1 895 4
Ruby 60 154 11 – 1 883 2
Total 1,520 1,182 202 9 7 6,623 20

projects undergo restructuring activities. The perspective is
of researchers interested to understand the CI/CD evolution
process with the long-term goal of automatically recommending
restructuring actions. The context consists (i) for the qualitative
analysis, of a sample of 615 commits out of 2,383 candidate
ones coming from 1,235 GitHub open source projects and
having at least a CI/CD configuration file; (ii) for the quan-
titative part, of 253,492 commits from 4,644 projects using
Travis-CI, changing the pipeline configuration file at least once
and having more than 100 commits from Travis-CI adoption.

The data and scripts of our study are publicly available [52].

A. Research Questions

Similarly to production and test code, CI/CD pipelines, i.e.,
CI/CD configuration files, evolve. They follow the evolutionary
needs of the underlying systems, not only from a technological
perspective but also in terms of developers’ needs. While
previous work has studied CI smells and antipatterns [27],
[29], [34], [49], [50], [53], it lacks a deeper understanding
of what kinds of restructuring actions (which go beyond
smell/antipattern avoidance or removal) are applied in CI/CD
pipelines. Therefore, we formulate our first research question:

RQ1: What are the restructuring operations occurring in
CI/CD pipelines?

Knowing the restructuring actions applied to CI/CD configu-
ration files, it is possible to derive a set of metrics for tracking
their evolution over time as previously done for tracking the
evolution of other software artifacts. For example, it is possible
to trace the evolution in terms of how many build jobs are
defined, how many of them are allowed to fail, the total number
of (global) environment variables, etc.. Based on the evolution
of such metrics, we answer our second research question:

RQ2: How do CI/CD pipelines evolve over time?
Through such metrics it will be possible to understand what

kinds of CI/CD pipeline changes occur more frequently than
others. Also, the metrics could be a starting point to devise
approaches to recommend pipeline restructuring actions.

B. Context Selection

The study context for answering our RQ1 is made up of
615 commits, sampled from an initial set of 2,383 candidate

CI restructuring commits, which have been extracted from
1,235 open source projects hosted on GitHub and written in
8 different programming languages, i.e., JavaScript, Python,
Java, Ruby, C++, PHP, C# and C. These are among the top
10 most popular languages on GitHub1.

The projects to analyze have been selected as follows. For
each programming language, we used the GitHub API to sort
the whole set of GitHub projects using the number of forks
as a proxy for their popularity, whereas we excluded projects
being forked from others. After that, we ordered the projects
from the most to the least popular, filtering out those that did
not use a CI/CD infrastructure. More specifically, we cloned
the project repository locally and searched for the presence of
a predefined set of configuration files indicating the adoption of
one of the following CI/CD infrastructures: AppVeyor, Bamboo,
Circle-CI, GitLab, Jenkins, Semaphore, Travis-CI, and Wercker.
We stopped the projects’ selection once we collected the top
1,000 projects using at least one CI/CD infrastructure for each
programming language, ending up with a total of 8,000 projects.

Table I shows the number of projects using each CI/CD
infrastructure framework by programming language (no project
using Bamboo was found). Note that the sum in the “Total”
row is greater than 8,000 (9,563) because some projects rely on
multiple frameworks. As highlighted in Table I, and consistently
with previous work [32], Travis-CI is by far the most adopted
CI/CD infrastructure in GitHub, followed by AppVeyor and
Circle-CI. Unsurprisingly, only 202 projects use GitLab, and
only 9 projects rely on Jenkins.

Looking at the number of forks in the 8,000 projects, only
for C# we ended up sampling projects with less than 100 forks
(min=40, median=106.5), while for the other programming
languages the minimum number of forks is greater than 105.

Having collected the projects, we used Perceval [24] to
retrieve their change history. Specifically, for each commit
we stored the path of the files it impacts (i.e., modifies, adds,
deletes) and the commit message. Through regular expressions
applied to the file names, we filtered out all commits that do not
change the CI/CD configuration files. Moreover, we excluded
commits not explicitly mentioning restructuring actions in the
commit message. This was done by matching in the commit
message the following five keywords devised after a preliminary
skimming of projects’ logs: refact, restruct, cleanup, clean up
and remodul. Finally, we filter out commits where the ratio
between the number of impacted files related to the CI/CD
infrastructure and the total number of impacted files is lower
than 0.3. This because we wanted to focus on commits that are
likely to implement restructuring actions for the CI/CD process,
excluding commits impacting a large number of files and likely
representing tangled changes. As a result, we obtained 1,235
projects containing 2,383 candidate commits to inspect.

Concerning the context for our quantitative study (RQ2),
we started from the 6,623 projects relying on Travis-CI. We
then selected those having at least one commit modifying the

1https://madnight.github.io/githut/\#/pull\_requests/2021/1



CI/CD configuration file and excluded those having less than
100 commits after the Travis-CI introduction (4,644 projects).

C. Qualitative Analysis of CI/CD Pipeline Restructuring

To derive a catalog of CI/CD restructuring actions (RQ1),
we manually analyzed a total of 615 randomly selected (in
proportion among different programming languages) commits
from the 2,383 candidate ones resulting from the regular
expression matching described in Section II-B. As it will be
clearer below, the 615 commits were incrementally coded
in a pilot phase (30), a first round involving 122 commits,
a second-round done on a statistically-significant sample of
283 instances (confidence interval of ±5% confidence level
95%), and a saturation phase (180). The overall set of 615 is
statistically significant with a confidence interval of ±3.4%.

The manual analysis was conducted to classify each commit
as (i) false positive (e.g., cases where the “clean up” keyword
matched in the commit message refers to a specific phase that
can be set in the CI/CD configuration file, while not referring
to a possible restructuring action); (ii) no: the restructuring
action is not referring to the modified CI/CD infrastructure;
and (iii) yes: the restructuring action mentioned in the commit
message involves the CI/CD process. All the cases labeled as
yes have been additionally categorized with a label describing
the kind of restructuring action applied. The labels were
created by following a card-sorting procedure, and specifically
a cooperative (multiple annotators) hybrid card-sorting (partial
set of predefined categories) [45].

We started from a predefined list of categories derived
running a pilot study in which three of the authors (raters in the
following) analyzed, in a plenary session, a random set of 30
commits modifying a CI/CD configuration file and explicitly
referring to a restructuring activity in the commit message. The
labeling procedure was performed in two different steps. First,
a set of 122 commits has been validated independently by two
raters who could assign one of the previously defined categories
or add a new one when needed. The category assignment was
based on the inspection of the commit diff, message, and
related discussions such as linked pull requests or issues. The
commits to inspect were organized into a Google sheet. When
one of the raters had to categorize a commit, the Google sheet
provided the list of categories defined so far by both of the
two raters. This was done to help in using consistent naming
while not introducing a substantial bias. Indeed, given the goal
of our manual validation (i.e., classify the type of restructuring
action), the number of possible categories may be extremely
high. Note that, while the defined categories were visible as a
list, it was not possible to see which category was assigned by
the other rater to the inspected commits.

At the end of the first round of the labeling process, an
open discussion was performed by adding a third rater. In the
open discussion, we checked all the commits that had at least
one yes assigned (i.e., at least one of the two raters found the
commit to be relevant for our study). Given that the process
of defining categories was incremental, it was not feasible to
estimate the reliability of the study using inter-rater agreement.

To limit agreement by chance, also cases where there was an
agreement were confirmed and discussed with the third rater.
Finally, the three raters worked together to derive a first version
of the catalog consisting of a set of 40 CI/CD restructuring
actions.

The same procedure has been used to classify the remaining
283 commits. Based on the 8 newly emerged categories, the
three raters worked together to refine the previous version
of the catalog that accounted, after this step, of 34 types of
restructuring actions.

As the last step, we randomly choose a different set made up
of 180 commits to check for saturation. Such a number has been
defined with the final goal of obtaining ∼100 commits classified
with a yes. Based on our experience, ∼45% of commits we
automatically select are either false positives or not relevant
for our study (no classification). The above commits have
been labeled by two raters independently using as predefined
categories the ones obtained after the catalog refinement step
(with the possibility of defining new categories). In the end,
an open discussion between them was performed for solving
conflicts and agreeing on the newly added restructuring actions
(i.e., 3). By discussing with a third rater we ended up combining
multiple restructuring actions related to either enabling or
disabling a feature (e.g., allow failure). We can conclude that
no new categories emerged from our saturation check.

The final version of the catalog features 34 CI/CD restruc-
turing actions organized into two (1st-level) categories, in turn
specialized into seven (2nd-level) sub-categories.

D. Metrics/Facts extractor

To quantitatively investigate how the CI/CD process changes
over time, we derived a set of metrics aimed at tracking its
evolution by looking at CI/CD configuration files. We started
from the catalog of CI/CD restructuring actions obtained as a
result of RQ1, and focused on the Travis-CI infrastructure since,
as shown in Table I, it is the most widely used among the 8,000
projects we analyzed. We defined a set of 16 metrics/facts
as summarized in Table II. The metric extractor has been
developed in Python, leveraging the yaml package.

Similarly to the evolution of production and test code, we
look at the size of the CI/CD configuration files by counting
the total number of lines of code by filtering out comments and
empty lines (M1), and we extract the comments they contain
(M2), that can be used to quantify the number of comments
and to keep track of their changes.

Then, we consider build matrices. A build matrix [14]
allows for defining values for different environment settings
(e.g., compiler/interpreter versions) or variables, so that jobs
will be instantiated by combination of those values and run
in parallel. We look at three different metrics and a fact
aimed at characterizing the build matrix: (i) build matrix
size, (ii) jobs excluded, (iii) jobs allowed to fail, and (iv)
fast finishing. Concerning the build matrix size (M3), Travis-
CI gives the possibility to define them by using the matrix
expansion feature or else by listing the configuration of each
job. First, we identified the set of keys that can be used as



TABLE II
DESCRIPTION OF THE METRICS BEING EXTRACTED FROM CI/CD CONFIGURATION FILES

ID Metric/Fact Description
M1 LOC Number of lines of code without comments and empty lines
M2 Comments Set of comments
M3 Build matrix size Total number of jobs that run in parallel
M4 Jobs excluded Number of unwanted jobs from the ones identified by the build matrix expansion
M5 Jobs allowed to fail Number of jobs that are allowed to fail without causing the entire build to fail
M6 Fast finishing Whether or not, in presence of jobs allowed to fail, the build can be marked as finished even if not all of them are completed
M7 Phases Number of job-defining phases among the ones predefined by Travis-CI
M8 Env. variables Number and name of the public (i.e., environment) variables defined in the env key
M9 Global env. variables Number and name of the env. variables global to the matrix (i.e., considered for each job in the matrix expansion) as defined in the global key
M10 Notification channels Number and types of channels explicitly used to notify the build results (e.g., Slack or IRC)
M11 Use Docker Whether or not the build relies on Docker as a service, together with the set of Docker commands used (within the pipeline configuration)
M12 Use shell commands Whether or not, the build configuration (i.e., .travis.yml) run a shell script as part of the CI/CD process, together with the set of commands
M13 Use stages Whether or not the CI/CD process relies on build stages to group jobs and parallelize their execution in each stage while running stages sequentially
M14 Caching Whether or not the CI/CD process relies on the caching feature, together with its configuration (content of the cache key)
M15 Retrying Set of commands that use the travis_retry function for retrying the command up to a specific number of time if the return code is non-zero
M16 Waiting Set of commands using travis_wait function to extend the time a command has to complete

matrix expansion keys that take arrays of values (i.e., env,
rvm, jdk, gemfile, dist, python, arch, node_js, php, compiler,
os, mono, and dotnet), and multiply their size. This gives
us the number of jobs being defined by simply using the
matrix expansion feature. Then, we add the number of jobs
listed individually by counting the number of entries into
the key jobs.include or matrix.include and remove
the number of excluded jobs (M4). Indeed, since the matrix
expansion feature may produce unwanted combinations (i.e.,
resulting in unneeded jobs), it is possible to exclude some jobs
by relying on the jobs.exclude or matrix.exclude
key. The number of entries for the above keys together with
the number of jobs excluded through environment variables
results in M4. Furthermore, Travis-CI gives the possibility
to define jobs that are allowed to fail in the build matrix
(e.g., jobs for non-stable environments) without impacting the
overall build status by using the jobs.allow_failures
or matrix.allow_failures key. The number of entries
for the above keys results in M5. Finally, to speed up the build
process in presence of jobs that are allowed to fail, it is possible
to mark the build as finished even if not all the jobs have been
completed. M6 looks at whether the fast_finish: true
property has been set inside the jobs/matrix section.

Each job in Travis-CI can be seen as a sequence of different
phases (e.g., install, script). We extract the number of phases
together with their characteristics (M7) such as the list of
commands invoked in each phase. Furthermore, using the env
key we derive M8. To avoid duplicated code and increase the
maintainability of the build process, developers may rely on
environment variables that are global to the matrix. The entries
in the env.global key with their specifications are used to
determine M9.

The CI/CD notification mechanisms let anyone know about
the build results. By counting the number of entries in the
notifications key, excluding the ones set to false, together
with their properties we obtain M10. Also, we check whether or
not the build process relies on Docker, by looking at whether
the .travis.yml includes Docker inside the services
key or the CI/CD process relies on Docker Compose as a
tool. After that, we identified the set of Docker commands
by searching for commands in phases having the - docker

prefix (M11). Note that it is out of our scope to look at changes
in the Docker configuration files.

To improve the readability and understandability of the
CI/CD configuration files it is possible to rely on the invocation
of shell scripts as part of the CI/CD process. Through regular
expression matching, M12 identifies the presence of shell script
invocations.

We also capture if a CI/CD process relies on (i) build stages
(stages key), i.e., groups of jobs executed sequentially (M13),
or (ii) caching strategies (cache key with their properties)
for storing the content that does not change and reuse them in
subsequent builds (M14) to speed up the overall build process.

Finally, the last two facts reported in Table II focus on
the usage of two specific features provided by Travis-CI,
namely travis_retry (M15) and travis_wait (M16)
that can be used to impact the way the overall build outcome
is determined.

E. RQ2 Methodology

Starting from the 6,623 projects relying on Travis-CI as
CI/CD infrastructure (see Table I), for each commit in their mas-
ter branch modifying the CI/CD infrastructure, we downloaded
the content of the .travis.yml file and computed the 16
metrics/facts previously introduced. For projects with multiple
Travis-CI configurations, we analyzed all of them. After that,
we computed the differences in terms of metrics/facts among
two subsequent changes as described in the following:

• for each numerical metric (e.g., LOC) we compute whether
the value increases, decreases, or remains unchanged;

• for each fact (e.g., comments or phases’ content) we
determine whether or not its value (e.g., set content)
changes;

• for each boolean metric (e.g., Caching, Use shell com-
mands) we compute whether the feature is being intro-
duced or removed in a commit.

To address RQ2, we report:
• the percentage of commits over the projects’ CI history

that affected Travis-CI configurations and those which
increased/decreased its size;

• a Spearman’s correlation [44] analysis between the number
of changes to Travis-CI and the CI history length;



• results of Dunn’s test [25] to determine whether the
frequency of CI configuration file changes significantly
varies between programming languages (p-values are
adjusted using Benjamini-Hochberg correction [51]). We
also compute Cliff’s d effect size [30].

• the percentage of projects where each metric changed at
least once, at least 25% or 50% of the commits modifying
the Travis-CI configuration, where it increased/was added,
decreased/was removed, or was changed.

• considering the 615 commits manually-classified in RQ1,
for each of the 34 restructuring actions, whether the 16
metrics increase or decrease.

III. STUDY RESULTS

This section discusses the study results addressing the two
research questions formulated in Section II.

A. What are the restructuring operations occurring in CI/CD
pipelines?

As a result of the qualitative analysis, we identified 34
CI/CD pipeline restructuring actions. As shown in Table III,
such actions have been organized in a three-level taxonomy.
The first level of the taxonomy distinguishes between:

1) Extra-Functional (EF): actions that (in principle) should
not modify the pipeline behavior (or should have a
limited effect on it), and introduce an extra-functional
improvement to the pipeline, e.g., maintainability, security,
or performance;

2) Pipeline-Behavior (PB): actions modifying the pipeline’s
behavior, that aim at restructuring the pipeline to cope
with the system’s or technology evolution, or to improve
the pipeline’s effectiveness.

The second level of the categorization groups restructuring
actions based on their purpose. Table III also reports, for each
type of action, the number of instances found in our manually-
analyzed sample. In the following, we discuss the different
categories of the taxonomy.

Maintainability (EF). This category groups restructuring
actions aimed at making the pipeline easier to understand and
maintain. The most common action, Improve readability of code
snippets, concerns redesigning a yaml source code snippet
(without altering its syntax) to make it more compact, or to
ease its readability. For example, in zeromq/zyre a commit
explicitly admits the removal of duplicated commands in
the .travis.yml file: “Problem: .travis.yml contains a lot
[of] duplication. Solution: Cleanup the travis file” [15], or in
yiisoft/yii2 we found a commit where the developer removes
a command reported in each stage of the pipeline as already
included in the after_script phase (i.e., “cleaned cleanup
(done in after_script)”) [13]. From a different perspective, in
phpbb/phpbb we encountered a commit in which the goal was
to restructure the conditional commands being involved in the
before_script phase to group the cases with the same
objective (i.e., “[task/travis] Refactor php version check for
dbunit install”) [11]. Related to readability, often developers

improve the level of the yaml script documentation (i.e.,
Improve code comments).

Another relevant action is related to Simplify build matrix.
The build matrix allows defining treatments for different
dimensions under which a build must be run. These may include
for example compiler/interpreter versions, virtual machines, or
simply environment variable values. The Use matrix expansion
feature or list job configurations explicitly groups change in
the strategy used for specifying the pipeline environments, i.e.,
listing jobs explicitly or using a matrix expansion.

Then, there are categories that are analogous to Fowler’s
refactoring [28], although they are performed on build-related
assets. Specifically, we found: Split build scripts and/or build
jobs, Extract environment variables, Move variables to a
different scope, and Rename steps/tasks/scripts/jobs.

Other categories are related to changing the way a task is
accomplished, e.g., using a shell script or a dedicated plug-
in. These include Use shell scripts to avoid duplicated code,
or, on the contrary, Remove shell invocations and Replace
tools/methods for accomplishing a specific task. Concerning
the first one, we found a commit in karelzak/util-linux [5] where
the developer explains the reason why it is important relying
on specific shell scripts instead of simply relying on the Travis-
CI features: “travis-ci: refactor and add .travis-functions.sh.
Travis yaml syntax, where we can only use shell one-liners, is
awful and ugly. We add a real shell script and source it from
.travis.yml”. While in principle this change should not affect
the behavior, there is no guarantee that a plugin and the shell
script behave exactly the same.

Performance (EF). These restructuring actions aim at
reducing the build time (a slow build is one of the antipatterns
advocated by Duvall [27] and monitored by the tool by Vassallo
et al. [49]). In most cases (in our manual analysis sample) the
build speedup is achieved by removing unneeded components
from the build, either unneeded environments, scripts, or tasks,
or through a Cleanup build matrix, i.e., by removing unneeded
entries from a build matrix (e.g., a compiler/interpreter no
longer used).

It is also possible to improve performance by adopting CI
caching (i.e., Change caching configuration), e.g., to perform
incremental builds without refreshing and even recompiling
some dependencies every time.

Some other performance-related actions have been advocated
by existing literature, in particular by Duvall et al. [26]. These
include Introduce parallelization by running more than one job
in parallel or else by introducing staged builds. For example,
in gatsbyjs/gatsby we found a commit reporting: “... ci: attempt
to speed-up jobs” [3], or in chef/knife-ec2 a commit reporting
that the parallelization relies on threads (i.e., “Speed up travis
installs by running 7 threads”) [2].

Security (EF). While identifying security-related concerns
was not a specific goal of our work, and has been extensively
treated in related literature [41] (concerning Infrastructure-as-
Code and not specifically CI/CD pipelines), we found two
types of restructuring that relate to security. One, pointed
out by Rahman et al. [41], but also detected by the pipeline



TABLE III
CI/CD PIPELINE RESTRUCTURING ACTIONS

First-Level Second-Level Restructuring # of
Category Category Action Instances

Extra Functional

Maintainability A01: Improve readability of code snippets 24
A02: Extract environment variables 16
A03: Simplify build matrix (without removing jobs) 16
A04: Use shell scripts to avoid duplicated code 13
A05: Split build scripts and/or build jobs 11
A06: Use matrix expansion feature or list job configurations explicitly 11
A07: Improve code comments 9
A08: Remove shell invocations 7
A09: Move variables to a different scope 4
A10: Rename steps/tasks/scripts/jobs 4
A11: Replace tools/methods for accomplishing a specific task 4

Performance A12: Remove unneeded environments/scripts/tasks 59
A13: Cleanup build matrix 41
A14: Change caching configuration 20
A15: Introduce parallelization 9

Security A16: Introduce/Remove sudo in commands 3
A17: Remove credentials/tokens in clear 2

Changing
the pipeline’s
behavior

Infrastructure A18: Introduce Dockerization/Containerization 3
Build Policy A19: Change how the build outcome is determined 10

A20: Skip useless tasks/steps/environments 9
A21: Change build matrix introducing allow_failure 8
A22: Change the dependencies’ installation policy 6
A23: Introduce/Remove nightly builds 3
A24: Deploy only after build success 1
A25: Move from manual to automatic tasks 1

Dashboard/notifications A26: Improve readability of the build log 19
A27: Restructure the notification mechanism 13

Build Process Organization A28: Update checks in the build process 43
A29: Reorganize build steps order of execution 27
A30: Restructure install and script phases 13
A31: Restructure jobs and/or stages 7
A32: Introduce/Change timeout/waiting time for tasks 2
A33: Introduce/Remove retry for commands 2
A34: Use parametrized builds 1

linter of Gallaba and McIntosh [29], is related to Removing
credentials/tokens in clear from the pipeline configuration. The
latter is highly important for open source projects since the
pipeline configuration is accessible to anybody. Moreover, a
different restructuring action is Introduce/Remove sudo in
commands. For example, in getsentry/sentry-ruby, we found a
commit which message mentions “... Don’t tell people to sudo
bundle install. That’s Bad” [4].

Next, we discuss pipeline restructuring categories that aim
at changing the pipeline behavior (PB), i.e., those related to
Infrastructure, Build Policy, Dashboard/Notifications, and Build
Process Organization.

Infrastructure (PB). We found only three cases in which
the infrastructure set to run the overall build process changed by
adopting Docker to have a consistent environment, increase the
repeatability and reduce the overall build time (i.e., Introduce
Dockerization/Containerization).

Build Policy (PB). First, this category includes a set
of restructuring actions dealing with the build triggering
strategy, e.g., the way the build process is enacted, namely
Introduce/Remove nightly builds, Deploy only after build
success, Move from manual to automatic tasks and Change
dependencies’ installation policy. The former entails both the

introduction and removal as a possible improvement activity,
since, as already reported by Zampetti et al. [53], depending
on the case a nightly build can be better (for time-consuming
tasks) or worse (it defeats the principle of continuous builds).
Concerning the dependencies installation policy, developers
often change it to reduce the overall build execution time.
For example, in mruby/mruby we found a commit where the
developer admits the reduced build time as a consequence of
the change in the way dependencies are installed, i.e., “Disable
automatic update and clean up on brew install (install time
160 sec -> 5 sec)” [7].

This category also includes restructuring actions involv-
ing the strategy used for assigning the overall build sta-
tus: Skip useless tasks/steps/environments, Change build
matrix introducing allow_failure, and Change how
the build outcome is determined. Concerning Skip useless
tasks/steps/environments, even if previous literature highlights
that skipping a task/stage/job to hide a failure instead of fixing
it is a bad practice [49], [53], we found cases where skipping
represents a safe operation. For example, in navit-gps/navit a
commit motivates the circumstances under which the skip is
mandatory: “update:CI: skip the build steps if the change is
only for documentation” [8].



Some CI/CD infrastructures (e.g., Travis-CI) permit to
specify jobs that are allowed to fail without affecting
the overall build status (Change build matrix introducing
allow_failure action). While, in principle, this is useful to
cope with unstable environments, once the environment reaches
maturity, it is important to make the job affecting the build
status [50]. The Change how the build outcome is determined
includes cases where developers move commands from the
script to the after_script phase in Travis-CI [6], or
else cases where developers rely on the fast_finish feature
provided by the CI/CD framework for reporting success/failure
without waiting for jobs that are allowed to fail [1].

Dashboard/Notifications (PB). This category includes re-
structuring actions aimed at improving (i) the notification
mechanism used to let developers know the build result, i.e., Re-
structure the notification mechanism, and (ii) the build outcome
shown in the build log, i.e., Improve readability of the build
log. For Restructure the notification mechanism, for example, a
commit message mentions the need to replace the notification
mechanism to fulfill a project policy “Remove Travis CI
notification hook for IRC ...* Add Travis CI notification hook
for gitter.im” [12]. Concerning Improve readability of the build
log, we found a commit in openmm/openmm where a developer
clearly states: “Eliminate extra warning about overriding the
warning level [...] Remove annoying -V” [9]. While in the
previous case better readability is achieved by pruning useless
information, in other cases more details need to be added. For
example, in phalcon/incubator a commit reports the need to
“Be verbose on tests” [10].

Build Process Organization (PB). This category accounts
for restructuring activities dealing with the overall CI/CD
process organization in terms of commands involved in each
phase, stage, or job, and their order of execution: Restructure
install and script phases, Reorganize build steps order
of execution, Restructure jobs and/or stages, Use parameterized
builds, and Update checks in the build process. For the latter,
we found cases in which the execution of specific phases is
needed only when the build is triggered by a pull request or a
change is done on a specific branch.

Introduce/Change timeout/waiting time for tasks includes
changes aimed to avoid build termination because of a timeout,
while Introduce/Remove retry for commands deals with running
or not the same command multiple times before determining
the overall build status. The latter may be useful to cope with
flaky behavior (which is a known practice in CI/CD [42]),
although its abuse is a bad practice [50].

RQ1 summary: We devised a taxonomy of 34 CI/CD
pipeline restructuring actions, coping with extra-functional
properties, or with the adaptation of the pipeline to the
system/environment evolution.

B. How do CI/CD pipelines evolve over time?

Fig. 1 shows boxplots of the percentage of commits, over the
project CI history, where the .travis.yml file(s) was/were
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Fig. 1. % of commits, LOC increase and decrease impacting Travis-CI config.

TABLE IV
% OF PROJECTS UNDERGOING CHANGES TO DIFFERENT METRICS

Metric % Proj ≥25% ≥50% % Proj % Proj %
Pr. .yml .yml Incr. Decr. Changes

changes changes
Comments (M2) 61.95 32.28 11.65 58.10 51.08 61.95
Jobs (M3) 82.90 35.51 6.48 78.53 71.25 –
Excl. Jobs (M4) 11.52 0.84 0.11 11.24 10.12 –
Allow Fail (M5) 27.61 1.98 0.22 26.59 23.79 –
Fast Finish (M6) 15.96 – – 15.48 7.80 –
Phases (M7) 91.97 75.43 42.87 75.28 55.34 91.97
Glob. Var. (M8) 30.86 6.57 1.72 29.52 19.53 30.86
Env. Var. (M9) 32.00 9.28 3.53 29.18 27.02 32.00
Notif. Ch. (M10) 22.65 1.98 0.65 20.63 0.00 22.65
Docker (M11) 10.59 – – 9.41 3.66 4.69
Shell (M12) 27.84 0.28 0.04 27.84 16.97 24.85
Stages (M13) 7.86 0.15 0.04 7.80 2.26 –
Cache (M14) 41.24 1.46 0.22 38.20 15.93 16.04
Retry (M15) 10.68 0.34 0.06 10.16 7.11 –
Wait (M16) 5.23 0.11 0.00 5.19 3.66 –

changed, as well as the cases in which LOC increased or
decreased (M1 in Table II). The numbers in parenthesis indicate
the first, second (median), and third quartile, respectively. As
it can be seen, the median percentage of changes is relatively
low (2.22% of the commits), however, in absolute terms, the
median number of pipeline-affecting commits is 20, even if 618
projects (' 10% of the total) have more than 100 commits. The
median percentage of changes increasing or decreasing LOC
is below 1% of the total. Indeed, the pipeline configuration
should not be modified for each change occurring in the project.
Rather, this should happen only when, as found by Vassallo
et al. [50], developers realize that the pipeline uses a bad
practice or, in general, there is a need for cleanup, or when a
radical change in the project/technology makes it necessary.

We also investigated whether projects with a longer history
change their pipeline more than others. We found a positive
yet moderate Spearman’s (ρ = 0.22), and Kendall’s (τ = 0.17)
correlation, implying that the number of changes to the pipeline
configuration only partially depends on the history length.

We also looked at whether CI/CD pipeline configurations
belonging to certain programming languages are more change-
prone than others. We found that Ruby and Python projects
are significantly more change-prone than others (Dunn’s test
p-value< 0.01, effect size medium in most cases, further
data in the appendix [52]). Python and Ruby exhibit subtle
incompatibilities across versions [43], and we found that
pipelines frequently adapt the build matrix adding/replacing
interpreter versions. This affects metric M3 in Table II.

Table IV provides an overview of the extent to which the
different indicators described in Table II (except for LOC,
discussed above) change across the analyzed 4,644 projects.



Table IV reports (i) the % of projects where each metric changes
at least once, (ii) changes at least 25% of the .travis.yml
commits, (iii) changes at least 50% of the .travis.yml
commits (iv) has at least an increase/introduction change, (v)
a decrease/removal change, or (vi) a modification change (no
increase nor decrease).

As it can be noticed from the table, Phases (M7, 91.97%)
and Jobs (M3, 82.90%) are those changed more. Even when
considering 25% or 50% of the changes, the percentage of
projects affected by such changes remains very high. This is
not surprising, because, as conjectured in the introduction, one
emerging reason for pipeline change is to adapt to changing
environments, e.g., compilers, interpreters. Other changes
affecting these variables are related to restructuring too complex
scripts into job matrices, or, in general, to simplifying matrices.

Other changes occurring quite often are related to documen-
tation by relying on comments being added to configuration
scripts (M2, 61.95%), which, as we see, both increase and
decrease. In our qualitative analysis, we noticed how comment
removals were either related to clean-ups, or to uncommenting
existing code. On the contrary, we found cases for which
comment additions were related to excluding code or else to
adding the reasons behind a specific configuration setting.

As for Cache (M14, 41.24% of the projects), we have
observed more introductions than removals, yet there were
cases in which developers found that it was no longer needed to
have an incremental build. Moreover, once introduced, caching
specification may evolve as a consequence of the evolutionary
history of the project (' 16%).

About 30% of the projects exhibit restructuring related
to defining global environment variables (M8) or extracting
environment variables (M9). We observed a similar proportion
of cases in which variables were added or removed.

The abuse of shell scripts may negatively impact the
maintainability of CI configurations [53]. However, we found
this to be controversial. In our study the percentage of projects
where the use of shell scripts (M12) increases (27.85%) is larger
than when it decreases (16.97%). This because, as explained
by the examples discussed in Section III-A, an external script
may help to simplify the build.

Unsurprisingly, notification mechanisms/channels (M10,
22.65%) are also customized quite a bit (e.g., because the
team changes), although we found no removals of notification.

Other observed changes partially relate to antipatterns
handled by the tool by Vassallo et al. [50], i.e., allowing a
build to fail (M5, 27.61%) for which, in practice, we observed
both additions and removals, and, with a lower percentage
(10.68%), retry jobs/tasks (M15).

Last, but not least, we observed a small, yet non-negligible
percentage (10.59%) of projects where changes in the configu-
ration concerned the introduction (in most cases) or removal
of Docker (M11), e.g., to cope with complex execution envi-
ronments. However, this may generate both maintenance [23]
or security [40], [41] issues in Docker configuration files.

Fig. 2 shows the extent to which metrics change in
the 615 manually analyzed commits of RQ1, that involve

.travis.yml files and are performed in the project’s master
branch (including the merger of other branches). Two action
types (A24 and A25) only occur elsewhere and are not reported
in this figure. Specifically, we report, for each refactoring action,
the proportion of commits (1=100%) where the metric changes
(a darker color corresponds to a higher proportion). Near each
action name, we report the number of considered commits (the
number may be smaller than in Table III, as the latter includes
commits in all branches as well as other CI/CD infrastructures
beyond Travis-CI). Cases where the number is small must be
interpreted with caution.

10 commits in our RQ1 dataset did not induce any change
to metrics. These were related to some fine-grained changes
(e.g., change build matrix order of execution, minor changes
to notification mechanisms, or changes to conditionals) not
captured by the current set of metrics.

By looking at Fig. 2, we can state that the 16 metrics detailed
in Table II very often reflect the type of restructuring action
being applied, even if, for many of them it is possible to see a
change in more than one metric, because restructuring actions
may occur together with other changes to the configuration
files, e.g., the addition of a new environment or the addition
of commands in previously defined phases. For example, M11

changes only when a project introduces or removes Docker as
a service (A18), or when it changes the way of using Docker
by modifying the commands being used. Each time a developer
moves a variable to a different scope (A09), e.g., introduce
a global variable from an environment variable, both M8

and M9 change. When moving/extracting commands from the
configuration file to a shell script (A04) or splitting jobs (A05)
we observe a change to M7 (100% and ' 80% respectively).
The second percentage is less than 100% as we currently
miss cases where script fragments were moved into other,
existing script files. Other missed cases here, as in Remove
shell invocations, may depend on the presence of shell scripts
having extensions we did not capture.

Concerning the adoption or change of the CI caching feature
(A14), 8 out of 10 commits show a change in M14, for the
other two cases we found a limitation in our extractor since
we only focus on the cache directive without considering the
before_cache key.

Even if our current set of metrics does not include the
analysis of conditionals yet, in ' 90% of the cases in which
checks were updated (A28) there is also a change in the
specification of the phases being included in the CI/CD
configuration (M7). Focusing on the replacement of tools (A11),
it seems that developers tend to apply the replacement in
isolation since that M1 does not change, and the same occurs
for the other 14 metrics.
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A26: Improve readability of the build log (13)
A23: Introduce/Remove nightly builds (2)

A22: Change the dependencies' installation policy (1)
A21: Change build matrix introducing allow_failure (8)

A20: Skip useless tasks/steps/environments (3)
A19: Change how the build outcome is determined (5)

A18: Introduce Dockerization/Containerization (3)
A17: Remove credentials/tokens in clear (1)

A16: Introduce/Remove sudo in commands (1)
A15: Introduce parallelization (4)

A14: Change caching configuration (12)
A13: Cleanup build matrix (32)

A12: Remove unneeded environments/scripts/tasks (41)
A11: Replace tools/methods for accomplishing a specific task (1)

A10: Rename steps/tasks/scripts/jobs (1)
A09: Move variables to a different scope (2)

A08: Remove shell invocations (4)
A07: Improve code comments (5)

A06: Use matrix expansion feature or list job configurations explicitly (10)
A05: Split build scripts and/or build jobs (4)

A04: Use shell scripts to avoid duplicated code (8)
A03: Simplify build matrix (10)

A02: Extract environment variables (8)
A01: Improve readability of code snippets (11)
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Fig. 2. Percentage of metric changes for commits containing CI/CD restructuring actions.

RQ2 summary: While the percentage of changes to Travis-
CI files is relatively low, some projects may undergo
several changes to the pipeline, in most cases concerning
build/phase restructuring. Within their limitations, our 16
metrics tend to reflect the performed restructuring actions.
Therefore, they can be useful features to suggest pipeline
restructuring actions as well as smell removals.

IV. THREATS TO VALIDITY

Construct validity (relationship between theory and obser-
vation). The choice of candidate commits in RQ1 may be biased
by the presence of certain keywords in commit messages. We
mitigate this threat by performing the RQ2 analysis on all
commits involving CI configurations. The manual analysis of
RQ1 might be insufficient to understand the developers’ intent
in restructuring CI configurations. We mitigated this threat
by observing all available sources (diffs, commit messages,
linked issues, and pull requests). For RQ2, one threat could be
related to the extent to which the 16 metrics of Table II reflect
restructuring changes to CI/CD pipelines. While we are aware
that those metrics are far from being complete, we derived
them from the qualitative observations of RQ1.

Internal validity (possible factors that could influence the
observed variables). We analyzed the extent to which factors
such as history length and programming language influence
CI configuration change-proneness.

Conclusion validity (relationship between treatment and
outcome). Such threats are due to the reliability of our
measurements. We have limited subjectiveness and error-
proneness in RQ1 by having multiple raters cooperatively
assessing the sample of commits. Given the complexity of
the task (with many categories that need to be incrementally
restructured), we preferred a cooperative card sorting [45] over

independent coding and inter-rater agreement computation. As
for RQ2, we limited problems due to bugs in our metrics
extractor by letting an author (who did not implement the
tool) manually checking the metrics extracted for a sample
of 30 projects. Nevertheless, as discussed in Section II-D and
Section III-B, our metric analysis is light-weight, therefore
approximations and imprecision occurred anyway.

External validity (generalization). As for the qualitative
analysis, we used the third step of manual tagging to verify
that saturation was reached. Besides that, we are aware that
our results are valid for open source projects, although the
sample of projects is relatively large, and although they are
related to 8 programming languages and, for RQ1, for 7 CI/CD
frameworks. As for RQ2, the metric extractor only works for
Travis-CI, the most popular in the open source [33]. Other
CI/CD infrastructures will be supported in our future work.

V. RELATED WORK

This section discusses the literature related to CI/CD
practices and to the evolution of software builds.

A. CI/CD barriers and bad practice

Different authors studied barriers/challenges in adopting
CI/CD. These were initially identified by Duvall et al. [26],
and related to the need for maintaining a fully automated
build process, handling dependencies, having different levels
of builds, and coping with different target environments.

Hilton et al. [31] studied barriers developers encounter when
moving toward CI. These are related to dimensions such as
quality assurance, security, and flexibility. Challenges in the
migration towards CD were then studied by Olsson et al. [39].

Once CI/CD is in place, it may be applied improperly,
making, for example, the pipeline less effective, slow, or
more difficult to maintain. To this extent, Duvall defined a
comprehensive set of 50 patterns and antipatterns regarding



different phases of the CI/CD process [27]. Zampetti et al. [53]
conducted an empirical investigation involving interviews with
developers, analysis of Stack Overflow posts, and online surveys
to identify CI smells that developers actually encounter in the
practice. They defined a catalog of 79 bad smells belonging to
7 different categories.

Differently from Zampetti et al. [53], we do not investi-
gate restructuring actions by interviewing developers or by
looking at Stack Overflow. Instead, we analyze how CI/CD
configurations change over time. For this reason, our work is
complementary to what done by Zampetti et al..

B. CI/CD smell detectors

Gallaba et al. [29] proposed an approach to detect and
remove antipatterns in Travis-CI configuration scripts. Such
antipatterns are specifically related to problems such as (i)
redirecting scripts into interpreters, (ii) bypassing security
checks, (iii) having unused properties in travis.yml files,
or (iv) unrelated commands in build phases.

Deviations from good CI principles have also been investi-
gated in a work by Vassallo et al. [49], however, by observing
the pipeline in its execution (i.e., through its log) rather than
analyzing its configuration scripts. Their tool, CI-Odor, detects
antipatterns such as a build becoming slow, developers working
on feature branches for a longer period, broken release branches,
or skipped tests to make the build passing.

Vassallo et al. [50] proposed a linter for GitLab configura-
tions, and conducted a six-month study on over 5k projects
hosted on GitLab. They monitored CI/CD bad practices and
automatically opened issues when such bad practices occurred.
They reported how a majority of the opened issues was fixed.

All the aforementioned work deals with the identification
and resolution of CI/CD bad practices. This is one of the
reasons (but not the only one, as we observed in our study) for
which a CI/CD pipeline is being restructured. Once pipeline
restructuring actions have been identified (RQ1), the facts
extracted and observed in RQ2 can be used to learn from
previous changes or from changes in other projects, and
recommend CI/CD smell removals.

Abdalkareem et al. [17] optimize the build process by
CI-skipping commits where the build outcome is clear.
Dynamically-skipping commits is one of the possible CI
pipeline optimizations. In other cases, as the ones studied in
this paper, a CI configuration restructuring would be necessary.

The work by Rahman et al. [41] is instead less related
to CI/CD configurations, while being related to security
smells in Infrastructure-as-Code scripts, e.g., in Docker image
configurations. As shown in our study, these may also affect the
evolution of a pipeline when Docker images are used within it.

C. Evolution and quality of builds

In previous work, researchers studied the evolution of builds,
which, unavoidably, interact with the evolution of CI/CD
configurations.

In an early study, McIntosh et al. [37] studied the effort in
build maintenance. They found that such an effort is similar

to the maintenance effort of production or test code and that
nearly 80% of the software developers are involved in such
changes. In a follow-up work [35], the need for maintaining
build files as a consequence of source code changes was also
predicted through random forest classifiers, and by using both
programming language-specific and language-agnostic features.

McIntosh et al. [38] studied the maintenance of build scripts
in programs using old (e.g., ant-based) and new, framework-
based (e.g., Maven) build technologies. The study suggests how
the latter requires more maintenance, also tightly coupled to the
evolution of the source code structure. Sometimes developers
also migrate between different build systems, as it has been
studied by Suvorov et al. [47] in the context of KDE and the
Linux kernel. They found how the build migration follows
phases similar to the spiral model life-cycle.

In the build process of C/C++ programs, frequently changing
header files can slow down the build. For this reason, McIntosh
et al. [36] propose the analysis of header file dependency graphs
to identify hotspots that can cause performance degradation.

Bezemer et al. study unspecified dependencies in Makefile-
based builds [20], in which the analysis of explicit dependencies
is relevant to entail incremental builds which, as found in our
study, may also be a key component of a CI/CD process.

The aforementioned research has highlighted how build
systems’ evolution plays a paramount role in software evolution.
In our paper, we shift the focus on the evolution of CI/CD
configuration scripts, to understand what features of such scripts
are typically subject to changes during restructuring operations.

VI. CONCLUSION

As production code, and as build automation scripts [37],
[35], [38], Continuous Integration (CI) and Delivery (CD)
pipelines evolve to cope with the system’s evolution and to fix
antipatterns/smells [27], [29], [49], [50], [53].

This paper reports an empirical study on the evolution of
CI/CD configuration files. With an open coding of 615 commits
from open source projects written in 8 programming languages
and relying on 7 CI/CD infrastructures, we devised a taxonomy
of 34 pipeline restructuring actions grouped into two-top level
categories (extra-functional changes, and changes affecting the
pipeline’s behavior) and 7 sub-categories.

The taxonomy supported us to identify 16 metrics and imple-
ment a metric extractor for Travis-CI. The analysis of pipelines’
evolution for 4,644 projects indicates that, although pipeline’s
changes do not occur as frequently as for production/test code,
they can happen several times. The study also shows how the
metrics can be used to monitor CI/CD pipelines’ evolution.

In future work, we plan to improve the analyzer to cover
further metrics and fine-grained changes, and to automatically
detect restructuring actions. Also, we plan to leverage it to sup-
port automated recommendations for pipeline improvements.
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