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ABSTRACT
Continuous integration and delivery (CI/CD) are nowadays at the
core of software development. Their benefits come at the cost of
setting up and maintaining the CI/CD pipeline, which requires
knowledge and skills often orthogonal to those entailed in other
software-related tasks. While several recommender systems have
been proposed to support developers across a variety of tasks, lit-
tle automated support is available when it comes to setting up
and maintaining CI/CD pipelines. We present GH-WCOM (GitHub
Workflow COMpletion), a Transformer-based approach supporting
developers in writing a specific type of CI/CD pipelines, namely
GitHub workflows.To deal with such a task, we designed an ab-
straction process to help the learning of the transformer while still
making GH-WCOM able to recommend very peculiar workflow
elements such as tool options and scripting elements. Our empir-
ical study shows that GH-WCOM provides up to 34.23% correct
predictions, and the model’s confidence is a reliable proxy for the
recommendations’ correctness likelihood.
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1 INTRODUCTION
Setting and maintaining a continuous integration and delivery
(CI/CD) pipeline is crucial for any software project. Indeed, CI/CD
contributes to enhancing software quality and developers’ pro-
ductivity [14], and to speed up release cycles [54]. Nevertheless,
previous research has highlighted the challenges encountered by
developers in setting up and maintaining CI/CD pipelines [13, 27,
46, 61, 62]. Despite the availability of modern CI/CD infrastruc-
tures and reusable assets (e.g., GitHub actions), the intrinsic CI/CD
requirements and underlying technology of a given project may
still make this task hard [27, 61]. For example, this could be the
case when a system needs to be deployed and tested on different
operating systems or even embedded devices.

The aforementioned challenges entail the need for recommender
systems helping developers in setting up and maintaining CI/CD
pipelines. This is also supported by a study by Soroar et al. [46],
reporting that∼60% of the 90 developers they surveyed encountered
difficulties in automating workflows using GitHub actions.

It is worth mentioning that the possible solutions are somewhat
similar to those related to automated code completion, where ap-
proaches have been defined either to provide suggestions about
non-trivial, generic code elements (up to blocks) to be completed
[18], or more specialized suggestions, e.g., related to creating asser-
tions [58], or repairing vulnerabilities [16, 22] and bugs [17, 33, 34].

That being said, helping developers in setting up a CI/CD pipeline
poses unique challenges. Indeed, the structure a CI/CD pipeline
mixes up very specific scripting elements (e.g., related to configur-
ing a server, downloading certain libraries, etc.) with some more
recurring and regular reusable elements (e.g., the actions in the case
of GitHub), up to natural language elements. Also, CI/CD pipeline
contain several extremely context-specific elements, such as paths
of installation directories, or URLs of resources to download. This
creates major challenges to the use of data-driven techniques for
the automated recommendations of these elements.

This paper proposes GH-WCOM (GitHub Workflow COMple-
tion) an approach leveraging Transformer models [55] to provide
automated completion of GitHub workflows. To develop (and train)
GH-WCOM, we have leveraged the existing body of GitHub work-
flows starting from a dataset by Decan et al. [20].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To make a GitHub workflow completion possible, we have de-
fined and implemented a multi-step pre-processing including an
abstraction of the tokens for which their verbatim prediction would
not be feasible (e.g., a very specific path in a project) while still
leaving to GH-WCOM the ability to recommend some very peculiar
workflow elements such as tool options and other scripting ele-
ments. GH-WCOM can recommend GitHub workflow completions
in different modes that mimic how a developer may implement the
workflow, i.e., (i) suggesting the next statement (a GitHub step), or
(ii) helping to complete a job with implementation elements once
the developer has defined, in plain English, what the job should do.

Summarizing, this paper makes the following contributions:
(1) We propose GH-WCOM, which, to the best of our knowl-

edge, is the first approach to automatically complete CI/CD
pipelines, and GitHub workflows in particular.

(2) We experiment with different pre-trainings, abstraction lev-
els, and completion scenarios. Results indicate that pre-training
at least on English text is required, and GH-WCOM’s perfor-
mance for correct prediction is ∼34%. The correct prediction
accuracy is correlated with the model’s confidence.

(3) We report a qualitative analysis discussing the extent to
which the recommendations provided by GH-WCOM could
still be helpful also when the generated output is differ-
ent from the target (expected) one. Also, we discuss how
GH-WCOM is competitive with respect to recent, popular
general-purpose recommenders based on large language
models, e.g., CoPilot [2] and ChatGPT [1].

(4) We made publicly available GH-WCOM scripts, checkpoints
predictions, and the used datasets [6].

2 BACKGROUND
GitHub workflows integrate CI/CD in the GitHub infrastructure. A
GitHubworkflow (example in the top part of Fig. 1, while the bottom
part will be described later in the paper) is a YAML file located under
the .github/workflows (sub)directory of a repository. As specified
by the on: clause, a workflow is triggered based on some events
(e.g., a push, a pull request) and executes a series of jobs, specified
after the jobs keyword (as the job named build in the figure).

Jobs are units of execution of a CI/CD process and can run in
parallel or sequentially (if dependencies between jobs are specified)
on runners. Unless they use explicit ways to exchange information
(e.g., uploading and downloading artifacts in a storage area), jobs are
independent of each other. Runners can be local or remote virtual
machines or containers. Runners and containers are specified after
the job name, using the runs-on clause, and, if containers are used,
the container: and image clauses. The job in the example runs
on an Ubuntu virtual machine and uses a container from an image
bringing the gcc compiler. Each job consists of a sequence of steps. In
Fig. 1, steps are all items preceded by a dash following the keyword
steps. There are two ways to implement a step. The first (denoted
by the keyword uses) is to leverage GitHub actions, i.e., reusable
applications available on GitHub that implement recurring tasks.
For example, the actions/checkout@v2 is version 2 of an action
checking the content of the GitHub repository branch on which
the workflow has been triggered.

name: CBuild

on:
  push:
     branches: [ main ]
  pull_request:
     branches: [ main ]

jobs:
  build:
    runs-on: ubuntu-latest
    container:
      image: gcc
  steps:  
   - name: checking out the repository
     uses: actions/checkout@v2
   - name: Running makefile to compile the program
     run:  make                                     

Example of GitHub Workflow

{
  "name": "CBuild",
  "on": {
    "push": {
      "branches": [
        "main"
      ]
    },
    "pull_request": {
      "branches": [
        "main"
      ]
    }
  },
  "jobs": {
    "build": {
      "runs-on": "ubuntu-latest",
      "container": {
        "image": "gcc"
      }
    },
    "steps": [
      {
        "name": "checking out the repository",
        "uses": "actions/checkout@v2"
      }
    …
  }
}                                                   

JSON-like Representation

YAML Representation

Figure 1: GitHub workflow example

The second (keyword run) consists of directly executing what-
ever application is available in the virtual machine/container (e.g.,
apt-get to install components, gradle to run a Gradle build). Run
steps are typically used for specific tasks for which an action is
not available, or the task is so simple as to not require an action.
Optionally, a step can be documented with a textual description
of its action or run command, using the name keyword. Further
information about GitHub workflows and actions is available on
the GitHub documentation [4].

3 GH-WCOM
This section describes GH-WCOM, the proposed approach to rec-
ommend GitHub workflow completions. GH-WCOM leverages the
Text-to-Text Transfer Transformer (T5) model by Raffel et al. [44].
First, we pre-train T5 by experimenting with different strategies.
Then, we train the tokenizer needed by GH-WCOM and, after an
hyperparameter calibration, we fine-tune T5 with instances specifi-
cally related to the actual prediction tasks. After that, we use the
trained model for two different kinds of predictions, i.e., (i) adding
the next step in a workflow job, or (ii) completing a job whose steps
have just been specified in terms of natural language text.

In the following, after overviewing the T5 model, we describe
the different steps of the approach.
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3.1 An overview of T5
T5 [44] is an encoder-decoder Transformer [55] designed to work
in a text-to-text setting. Whatever the generation task is, T5 can
be employed as long as both the input and the output can be repre-
sented as textual strings (e.g., translating from English to Spanish,
outputting the fixed version of a provided buggy code). We have
chosen T5 given its successful application in several code comple-
tion/generation tasks [18, 39, 52, 57].

The training procedure of T5 is usually performed in two steps.
First, the model is pre-trained on a large-scale dataset using self-
supervised training. The pre-training provides T5 with general
knowledge about the language(s) of interest. For example, assuming
the will of building an English-to-Spanish translator, we could
provide as an input to the model English and Spanish sentences
having 15% of their tokens masked, with the model in charge of
predicting them. That makes the pre-training fully self-supervised.

Subsequently, the model undergoes fine-tuning, which is super-
vised training (e.g., providing pairs composed of an English sentence
and its Spanish translation). Fine-tuning specializes the model for
the task of interest.

Raffel et al. experimented with five T5 variants, differing in terms
of the number of trainable parameters: small, base, large, 3 billion,
and 11 billion. Considering our computational resources and recent
successful application of T5𝑠𝑚𝑎𝑙𝑙 to automate code-related tasks
[18, 39, 52, 57], we opted for the simplest architecture which still
features 60M trainable parameters, consistently with large language
models used in the literature. For additional architectural details,
we point the reader to the work by Raffel et al. [44].

3.2 Abstraction
We conjecture (and will later experiment) that learning to autocom-
plete GitHub workflows on raw text (i.e., with no preprocessing)
is extremely challenging. This is mainly due to the presence of
context-specific (and often unique, i.e., they have not been seen
before) elements in the workflows, such as paths and urls. For
example, the left part of Fig. 2 shows a GitHub workflow featuring
elements such as the ./vendor/bin/phpunit path or the specific
version of an action the user is using (e.g., actions/checkout@v2),
which are likely to hinder the completion learning. These are some
of the elements we aim at abstracting with special tokens (e.g., re-
placing a path with the <PATH> tag), as it can be seen in the right
part of Fig. 2.

Such an abstractionmoves the definition of these context-specific
elements from T5 (now only in charge of indicating the need for
e.g., a <PATH>) to the developer. We acknowledge that this might
imply a slightly higher effort on the developer’s side who needs to
“fill the placeholders” (i.e., the special tags) in the prediction.

To define the abstraction rules, we leverage the unique set of
tokens extracted from the workflows of the projects listed in the
GitHub actions dataset by Decan et al. [21]. The dataset features
67,870 GitHub repositories, 29,778 of which use GitHub workflows,
and is the one we use to create our training and testing datasets
as described in Section 3.3. Given the list in that dataset, we were
able to clone 69,040 GitHub repositories, which is more than the
67,870 for which Decan et al. extracted workflow data. From those,
we retrieved all GitHub workflows and extracted their “tokens”.

A token can be an action name, a command to run, the option of
a command, a path, etc. Out of 10,188,342 unique tokens, 284,463
appear in one workflow, i.e., are very specific, confirming our con-
jecture about the need for abstraction. We randomly selected 1,000
of those tokens for manual inspection. We clustered them based on
their “type” (e.g., path, file). Such a process has been performed
by the first author, with the results checked by three other authors.
Such a process led to the definition of five categories of context-
specific tokens we aim at abstracting: url (i.e., a reference to a web
resource, such as an IP address), file (i.e., a file name/path), path
(i.e., a path to a directory or to any other resource which cannot be
identified as a file since lacking extension), version number, (i.e.,
the specific version of a library, language, or other resources being
used), and action version (i.e., the specific version of an action
that is used). For each category, we defined a special token acting
as a placeholder during the abstraction. Note that we distinguish
between version number and action version since we assume
this could provide additional information to the model which might
be useful for the learning.

The abstraction example reported in Fig. 2 shows how we re-
place the action version of the token actions/checkout@v2
with the special <PLH> token, while files and urls such as bin/-
install-wp-test.sh and 127.0.0.1 are replaced with ⟨FILE⟩
and ⟨URL⟩, respectively. The code implementing our abstraction
process is publicly available [6]. In a nutshell, we use regular ex-
pressions and heuristics to identify the token types of interest and
abstract them. The identification of files leverages, besides a reg-
ular expression, a list of extensions we defined during the manual
analysis of the tokens appearing in a single workflow. Such a list is
also provided in our replication package [6].

To validate our choice of the specific tokens to abstract, we ex-
tracted all single-occurring tokens in our dataset, namely those
certainly representing problematic cases for any data-driven tech-
nique. In total, we identified 23,273 distinct single-occurring tokens.
Out of these: 8,226 (37%) are paths, 8,068 (35%) are files, 2,833
(12%) are urls, and 2,334 (10%) are versions. This means that
∼93% of single-occurring tokens are abstracted by our procedure.
This indicates that the proposed abstraction strategy is suitable to
abstract rarely-occurring tokens.

3.3 Training and Testing Datasets
3.3.1 Pre-training dataset. Since the goal of pre-training is to pro-
vide T5 with general knowledge about the language(s) of interest,
we built a pre-training dataset featuring YAML files (i.e., the language
used in GitHub workflows), and in particular both general-purpose
YAML files as well as those implementing GitHub actions. The for-
mer are used for various purposes, e.g., CI/CD scripts for other
infrastructures (e.g., Travis-CI) or other configuration files.

GitHub actions feature a syntax closer to workflows and there-
fore would provide further knowledge during pre-training.

We collected general-purpose YAML files in two steps. First, we
searched for YAML files in the 69,040 GitHub repositories we cloned,
while excluding those implementing GitHub workflows that we will
use to fine-tune the model (i.e., those contained in the ./github/-
workflows/ directory). This resulted in 443,037 general-purpose
YAML files.
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Figure 2: Example of Raw and Abstracted Instance.

To further expand this dataset, we cloned all public non-forked
repositories having at least 100 stars and 100 commits, and created
in the time range that goes from 2022-25-01 (i.e., the day after Decan
et al. built their dataset) to 2022-30-09 (the day in which we per-
formed the data collection). The identification of these repositories
has been performed using the GitHub search platform by Dabić
et al. [5].

We successfully cloned additional 1,124 GitHub repositories that
are not in the dataset by Decan et al. nor are forks of those. To
create the pre-training dataset, which counts a body of 146,006
general-purpose YAML files, we excluded duplicated instances as
well as those including non-ASCII tokens and all those having
#𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 1024. Fixing an upper-bound in terms of the number of
tokens for the model’s input helps in taming the computational cost
of training and is a common practice in the literature exploiting DL
models to automate code-related tasks [18, 25, 37, 38, 53, 56].

Concerning the YAML files implementing GitHub actions, we
collected 13,638 unique examples about the usage of actions from
the GitHub Marketplace [3].

The pre-training dataset features 146,066 general-purpose YAML
files and 13,638 YAML files implementing GitHub actions. Each in-
stance in the dataset is a pair featuring (i) a YAML file with 15% of its
tokens randomly masked, and (ii) the expected target, namely the
tokens the model is expected to predict instead of the masked ones.

3.3.2 Fine-tuning dataset. Our fine-tuning dataset features 73,708
GitHub workflows from the whole body of GitHub projects made
available by Decan et al. [21]. On top of those, we mined 733 work-
flows from the 1,124 GitHub repositories previously mentioned.

We removed duplicated workflows, and, as done before, all those
having #𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 1024, instances containing non-ASCII characters,
and those which overlap with instances in the pre-training dataset.
We were left with 17,935 unique workflows used to train and eval-
uate GH-WCOM. These workflows feature an average of 54 lines
(median=41) and 120 tokens (median=84).

We split the dataset into training (80%), validation (10%), and
test (10%), making sure that all the instances coming from the same
project are assigned to the same subset, thus avoiding leakage of
data among the three sets. We obtained 14,348 workflows to train
the models, 1,793 for hyperparamenter tuning, and 1,794 to test the
best configuration identified. Each workflow is represented as a
JSON-like object preserving the structure of the original workflow
file, as it can be seen in the bottom part of Fig. 1.

We then fine-tune GH-WCOM to support two workflow comple-
tion scenarios. In the first one, next step (𝑁𝑆𝑡𝑎𝑠𝑘 ), GH-WCOM is in
charge of predicting the complete 𝑛𝑡ℎ step a developer is likely to
write in a workflow given the preceding already written tokens. A
step may or may not contain a textual description (name), and it can
either consist of action invocations (uses) or commands (run). In the
second scenario, job completion (𝐽𝐶𝑡𝑎𝑠𝑘 ), GH-WCOM gets as input
an abstract job where only names are specified, and it is asked to
complete it step by step. Fig. 3 helps in better understanding these
two scenarios by depicting a fine-tuning instance from our dataset.

Since we experiment with both the raw workflow version (i.e.,
no abstraction) and with its abstracted version, we report in Fig. 3
an example of “raw instance”. The left part of the figure 1 shows
the original GitHub workflow, while 2 depicts its version for fine-
tuning the model for 𝑁𝑆𝑡𝑎𝑠𝑘 . In this case, we are simulating a
scenario in which the developer already wrote the first 11 lines
of the workflow (i.e., up to steps:), and GH-WCOM is asked to
predict the first step of the job (i.e., uses: actions/checkout@v2).
Note that we can extract multiple (5) training instances from this
workflow. Indeed, we can ask the model to predict the first step of
the job given just the preceding statements.

Then, we can ask the model to predict the second step also given
the definition of the first step, etc. Fig. 3 3 depicts a fine-tuning
instance for 𝐽𝐶𝑡𝑎𝑠𝑘 . In this case, we assume that the developer
wrote the skeleton of a job by only defining, when available, the
job’s name it should feature (e.g., Yarn install). The model is in
charge to predict the step masked with the <TO_BE_PREDICTED>
token, while the <FOR-LATER-USE> token is used to indicate steps
that are not yet implemented. Also in this case we can build multiple
fine-tuning instances from the workflow in Fig. 3. We can start
predicting the first step in a job using the following 𝑛 − 1 for which
only the name is provided; then, we can predict the second step,
providing the model with the full implementation of the first (as if
the model already predicted it) and the following partially defined
𝑛 − 2 as context; etc.

Table 1 reports the number of instances in the training, validation,
and test datasets for both completion scenarios.

Table 1: Number of instances in the used datasets

Dataset train eval test

Pre-training 159,645 - -
Fine-tuning: 𝑁𝑆𝑡𝑎𝑠𝑘 108,900 13,009 13,630
Fine-tuning: 𝐽𝐶𝑡𝑎𝑠𝑘 108,900 13,009 13,630
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name: Bundle Size
on:
  pull_request:
    branches:
      - master

jobs:
  size:
    runs-on: ubuntu-latest
    env:
      CI_JOB_NUMBER: 1
    steps:
      - name: Cache node_modules
        uses: actions/cache@v1
        id: yarn-cache-node-modules
        with:
          path: node_modules
          key: ${{ runner.os }}-yarn-cache-node-modules-$
                                     {{ hashFiles('**/yarn.lock') }}
         
      - name: Yarn install
        if: steps.yarn-cache-node-modules.outputs.cache-hit != 'true'
        run: yarn install --frozen-lockfile

      

Workflow Raw Tokens @Original

…
jobs:
  size:
    runs-on: ubuntu-latest
    env:
      CI_JOB_NUMBER: 1
    steps:
      - name: Cache node_modules
        <TO_BE_PREDICTED>

      - name: Yarn install
        <FOR-LATER-USE>

…
jobs:
  size:
    runs-on: ubuntu-latest
    env:
      CI_JOB_NUMBER: 1
    steps:
      - <TO_BE_PREDICTED>     
                                                                      

1 2

3

Workflow — Next Statement Task

Workflow — Job Completion Task

Figure 3: Example of instance for fine-tuning the T5 model on both tasks, namely 𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘

3.4 Training and Hyperparameter Tuning
All the trainings we performed have been run using a Google Co-
lab’s 2x2, 8 cores TPU topology with a batch size of 32 and an input
and target sequence length of 1,350 and 750 tokens, respectively.

3.4.1 Tokenizer Training. Since our task is characterized by the
presence of natural language and human-readable data-serialization
language (i.e., YAML data), we trained a new tokenizer (i.e., a Sen-
tencePiece model [31] with vocabulary size set to 32k word-pieces)
to cope with context-specific elements. To this extent, we use the
159,645 YAML files included in our pre-training dataset and 712,634
English sentences from the C4 dataset [44]. The latter is a common
practice in literature when developing DL-based models that are
required to deal with multi-modal data such as code and technical
natural language [39, 57]. We included English sentences due to the
presence of technical English occurring within GitHub workflows.

3.4.2 Pre-training strategies. We assess GH-WCOM in four pre-
training scenarios. The first is No pre-training (T5NO−PT ), in which
the model is not pre-trained, but directly fine-tuned. This means
that the model has no previous knowledge of any language and it is
just trained to complete GitHub workflows with the available fine-
tuning dataset composed by ∼109k instances. The second is YAML
pre-training (T5YL), in which the model is first pre-trained for 300k
steps on a total of 159,645 YAML files including 13,638 actions from
the GitHub Marketplace [3] and then fine-tuned on the workflow
completion task. Thus, in this case the model has knowledge of
the general structure of YAML files before being then specialized on
the completion task. The third is the Natural Language Pre-training
(T5NL), for which we fine-tune the publicly available checkpoint by
Raffel et al. [7] which has been pre-trained for 1M steps on English
sentences from the C4 dataset [44].

The fourth scenario is Natural Language+YAML Pre-training
(T5NL+YL) inwhichwe further pre-trained the previouslymentioned
checkpoint for additional 300k steps on YAML files, reaching a total
of 1,3M pre-training steps (1M on English sentences + 300k on
YAML files).

3.4.3 Hyperparameter Tuning. Once pre-trained the models, we
fine-tune the hyperparameters of the model following the same
procedure employed by Mastropaolo et al. [40].

In particular, we assessed the performance of T5 when using
four different learning rate schedulers: (i) Constant Learning Rate
(C-LR): the learning rate is fixed during the whole training; (ii)
Inverse Square Root Learning Rate (ISR-LR): the learning rate de-
cays as the inverse square root of the training step; (iii) Slanted
Triangular Learning Rate [29] (ST-LR): the learning rate first linearly
increases and then linearly decays to the starting learning rate; and
(iv) Polynomial Decay Learning Rate (PD-LR): the learning rate has
a polynomial decay from an initial value to an ending value in the
given decay steps. The exact configuration of all the parameters
used for each scheduling strategy is reported in our replication
package [6]. Such a procedure has been performed for each of the
fine-tuning datasets previously described (i.e., both tasks on raw
and abstracted code).

Having four different training scenarios, four possible learning
rates, two different completion contexts, and two versions of the
fine-tuning dataset (i.e., abstracted and raw tokens), the hyperpa-
rameter tuning required building and evaluating 64 models. We
fine-tuned each model (i.e., each configuration) for 100k steps. Then,
we compute the percentage of correct predictions (i.e., cases in
which the model can correctly generate a recommendation) in the
evaluation set. Table 2 reports the achieved results for each of the
64 models we fine-tuned to find the best-performing configuration
(which is reported in boldface).

3.4.4 Fine-tuning. Once identified the best learning rates to use, we
fine-tuned the final models using early stopping to avoid overfitting.
In particular, we save checkpoints every 10k steps using a delta of
0.01, and a patience of 5. This means training the model on the fine-
tuning dataset and evaluating its performance on the evaluation
set every 10k. The training procedure stops if a gain smaller than
the delta (0.01) is observed at each 50k step interval and the best-
performing checkpoint up to that training step is selected. Complete
data about this process is available in our replication package [6].
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Table 2: Hyperparameters tuning results
No Pre-training

Raw Abstracted
𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘

Constant (C-LR) 11.06% 19.24% 13.27% 26.73%
Inverse Square Root (ISQ-LR) 12.38% 21.13% 14.21% 27.86%
Slanted Triangular (ST-LR) 10.13% 20.95% 12.81% 26.65%
Polynomial Decay (PD-LR) 10.86% 19.01% 13.78% 25.57%

YAML Pre-training

Raw Abstracted
𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘

Constant (C-LR) 16.26% 25.92% 19.05% 32.35%
Inverse Square Root (ISQ-LR) 15.77% 25.47% 18.93% 31.22%
Slanted Triangular (ST-LR) 14.26% 24.73% 18.05% 30.96%
Polynomial Decay (PD-LR) 16.15% 26.01% 19.24% 32.81%

English Pre-training [44]

Raw Abstracted
𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘

Constant (C-LR) 18.35% 27.18% 22.25% 34.02%
Inverse Square Root (ISQ-LR) 18.36% 27.10% 21.70% 33.91%
Slanted Triangular (ST-LR) 17.67% 26.61% 21.70% 33.25%
Polynomial Decay (PD-LR) 18.46% 27.47% 22.30% 34.12%

YAML+English Pre-training

Raw Abstracted
𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘

Constant (C-LR) 18.06% 27.40% 21.55% 32.91%
Inverse Square Root (ISQ-LR) 18.36% 28.17% 21.84% 34.62%
Slanted Triangular (ST-LR) 16.50% 25.90% 18.88% 32.11%
Polynomial Decay (PD-LR) 18.28% 27.33% 21.40% 33.36%

3.5 Generating Predictions
After the model has been trained, we can generate predictions for
the task we aim at supporting using different decoding schema. To
this end, we opted for a greedy decoding strategy [47] that generates
the recommendation, by selecting at each decoding step the token
with the highest probability of appearing in a specific position.
Thus, a single prediction is generated for an input sequence.

4 STUDY DESIGN
The goal of our study is to evaluate GH-WCOM. The quality focus
is GH-WCOM’s ability to provide correct predictions, as well as
predictions that, while differing from the ground truth, could still
be valuable for developers. We focus on the two completion scenar-
ios previously described: 𝑁𝑆𝑡𝑎𝑠𝑘 (mimicking a top-down coding
adopted by the developer when writing the workflow statement
by statement), and (ii) 𝐽𝐶𝑡𝑎𝑠𝑘 (helping the developer to complete
a job with implementation elements given its textual description).
The context consists of the test datasets summarized in Table 1.

The study aims at answering the following research questions:
RQ1:HowdoesGH-WCOMperformwith different pre-training

strategies? RQ1 assesses the impact of using different pre-training
strategies when completing workflows. We experiment with four
pre-training strategies, including the lack of pre-training.

RQ2: How does GH-WCOM perform for different prediction
scenarios? RQ2 tests GH-WCOM in different prediction scenarios,
i.e., next statement and job-level contextual completion with and
without abstraction.We also implement a statistical language model
used as a baseline for comparison.

RQ3: To what extent “wrong” recommendations provided by
GH-WCOM can be leveraged by developers? RQ3 gauges the ex-
tent to which “wrong” predictions (i.e., recommendations different
from the expected output) can still be useful to developers and thus
worth being integrated into CI/CD pipelines after minor changes.

4.1 Data Collection and Analysis
To address RQ1, we run the best-performing configuration for each
pre-training strategy and scenario (𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘 ) against
the test sets (Table 1). Then, we compute the percentage of correct
predictions, namely cases in which the models can synthesize com-
pletions identical to the expected target (i.e., the code written by de-
velopers). We further assess the quality of the predictions generated
using different pre-training strategies by relying on NLP (Natural
Language Processing) metrics such as BLEU [43] and ROUGE [35].

BLEU score (Bilingual Evaluation Understudy) [43] measures
how similar the candidate (predicted) and reference (oracle) texts
are. Given a size 𝑛, the candidate and reference texts are broken
into 𝑛-grams and the algorithm determines how many 𝑛-grams of
the candidate text appear in the reference text. The BLEU score
ranges between 0 (the sequences are completely different) and 1
(the sequences are identical). We use the BLEU-4 variant as did in
previous software engineering papers [52, 56, 59].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
is a set of metrics for evaluating both automatic summarization
of texts and machine translation techniques [35]. ROUGE metrics
compare an automatically generated summary or translation with
a set of reference summaries (typically, human-produced). We use
the ROUGE-L which computes the length of the longest common
subsequence between a generated and a reference sentence.

To answer RQ2, we first select the best-performing models when
supporting the completion of GitHub workflow with and without
abstraction in both predictions scenario (𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘 ). Later,
we assess the quality of the predictions using the same set of metrics
(i.e., correct predictions, BLEU, and ROUGE score) adopted in RQ1.
As there is no previous approach to compare GH-WCOM against,
we implemented a baseline leveraging an 𝑛-gram model which is a
specific actualization of a large class of techniques that assign prob-
abilities to sequences of tokens (i.e., Statistical-Language-Model
[23]). To train such a model we use the same set of instances used
to fine-tune GH-WCOM without, however, any masked part. We
experimented with three different values of 𝑛 (i.e., n=3, n=5, and
n=7), with 𝑛−1 being the number of tokens on which the prediction
of the next token is based upon. The best value for 𝑛 (𝑛 = 3) has
been found by running the models on the evaluation sets (results
in our replication package [6]).

The best model has then been run on the same test sets used for
GH-WCOM’s assessment. We do not compare GH-WCOM against
the 𝑛-gram when job-level information is provided (𝐽𝐶𝑡𝑎𝑠𝑘 ), since,
by construction, such a technique would not leverage the additional
knowledge provided (i.e., it only “looks” at the tokens preceding
the ones to predict). To explain how predictions are generated
with the 3-gram model, let us assume we are completing a piece of
workflow having five tokens 𝑇 , of which the last two are masked
(M): ⟨𝑇1,𝑇2,𝑇3, 𝑀4, 𝑀5⟩. We provide, as input to the model, T2
and T3 to predict M4, obtaining the model prediction P4. Then,
we use T3 and P4 to predict M5 obtaining the predicted sentence
⟨𝑇 1,𝑇 2,𝑇 3, 𝑃4, 𝑃5⟩. While GH-WCOM autonomously decides when
to stop predicting tokens, this is not the case for the 𝑛-gram model
in our usage scenario. We thus defined two heuristics to stop gen-
erating tokens. First, we stop when the 𝑛-gram model does not
generate any output token given the preceding 𝑛-1.
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Second, we rely on the format in which we represent the in-
stances in our datasets: Each instance is a JSON object and we
trained all models to generate as output {target}, where the two
delimiting curly brackets are the result of our JSON-like represen-
tation. Thus, we stop generating tokens when we reach a fully-
balanced (i.e., valid) JSON object for the test instance to predict
(i.e., the 𝑛-gram generated the “closing” curly bracket and the latter
does not close a curly bracket opened in the predicted code but the
JSON-related one).

We complement the quantitative evaluation by performing statis-
tical tests aimed at assessing whether GH-WCOM produces better
recommendations as compared to the baseline. We use the McNe-
mar’s test [41] (with is a proportion test for dependent samples)
and Odds Ratios (ORs) on the correct predictions both approaches
(i.e.,GH-WCOM and 𝑛-gram) can generate when evaluated in the
𝑁𝑆𝑡𝑎𝑠𝑘 completion scenarios, working with both abstracted and
raw tokens. We also statistically compare the distribution of the
BLEU-4 (computed at statement level) and ROUGE, assuming a
significance level of 95% and using the Wilcoxon signed-rank test
[60]. The (paired) Cliff’s Delta (𝑑) is used as effect size [24] and it
is considered: negligible for |𝑑 | < 0.10, small for 0.10 ≤ |𝑑 | < 0.33,
medium for 0.33 ≤ |𝑑 | < 0.474, and large for |𝑑 | ≥ 0.474 [24]. Due
to multiple comparisons for both statistical tests, we adjust 𝑝-values
using Holm’s correction procedure [28].

As for RQ3, we perform a twofold analysis. We first assess
whether the confidence of the model in the generated predictions
can be used as a reliable proxy of their “quality”. T5 provides a score
for each generated prediction which represents the log-likelihood of
the prediction. For example, having a log-likelihood of -2 means that
the prediction has a likelihood of 0.69 (𝑙𝑛(𝑥) = −2 =⇒ 𝑥 = 0.69).
The likelihood can be interpreted as the confidence of the model
about the correctness of the prediction on a scale from 0.00 to 1.00
(the higher the better). We split the predictions generated by T5
into ten buckets at steps of 0.1 (i.e., the lowest confidence scenario
groups the predictions having confidence between 0.0 and 0.1, the
highest from 0.9 to 1.0) and report the percentage of correct and
wrong predictions within each bucket. Then, given the positive
results we achieved (as we will show, the confidence values are
representative of the prediction quality), we randomly sample 384
cases of wrong predictions having a confidence ≥0.70, with 384
representing a statistically significant sample with a confidence
level of 95% and confidence interval of ±5%.

Each sample has been manually classified by two authors with
one of the following labels:

(1) A minor change is required to make the suggestion usable,
e.g., change an option or a value;

(2) GH-WCOM has recommended the correct action/script com-
mand, yet with wrong arguments;

(3) GH-WCOM has recommended the correct action/script com-
mand, yet with the wrong name;

(4) The suggestion is completely wrong, i.e.,GH-WCOM recom-
mendation is completely different from the ground truth.

In the labeling, the two involved authors achieved a Cohen’s
kappa [19] of 0.72, indicating a substantial agreement when mea-
suring inter-rater reliability for categorical items.

Conflicts, which occurred for 17.97% of inspected samples, have
been solved through open discussion among the authors.

We report the percentage of predictions assigned to each la-
bel and discuss qualitative examples of wrong predictions which,
however, might still be valuable for developers.

5 STUDY RESULTS
RQ1: HowdoesGH-WCOMperformwith different pre-training
strategies? The results obtained by fine-tuning T5 using different
pre-training strategies are presented in Table 3. The table shows
the model’s performance in terms of correct predictions, BLEU-4,
and ROUGE-LCS (F-measure). The best model for a given combi-
nation of task (i.e., 𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘 ) and evaluation metrics is
reported in boldface. As expected, the T5NO−PT is outperformed by
all pre-trained models, with 11.23% and 19.74% correct predictions
for the 𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘 task, respectively, when working on
raw code. When abstracting the dataset, the correct predictions for
the T5NO−PT model improve—14.14% for 𝑁𝑆𝑡𝑎𝑠𝑘 and 26.96% for
𝐽𝐶𝑡𝑎𝑠𝑘 —while remaining the worst configuration.

Table 3: Comparison among different pre-training strategies
in terms of correct predictions, BLEU-4 and ROUGE-LCS (f-
measure) computed at corpus level

Dataset PT-Strategy Correct predictions BLEU 4 ROUGE-LCS
𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘 𝑁𝑆𝑡𝑎𝑠𝑘 𝐽𝐶𝑡𝑎𝑠𝑘

Raw

T5NO−PT 11.23% 19.74% 13.70% 13.80% 44.0% 54.75%
T5YL 15.85% 24.51% 14.50% 24.10% 50.09% 61.20%
T5NL [7] 17.47% 26.02% 23.10% 29.60% 51.78% 63.34%
T5NL+YL 17.33% 26.35% 16.40% 27.70% 51.74% 63.58%

Abstracted

T5NO−PT 14.14% 26.98% 20.40% 24.20% 46.31% 59.92%
T5YL 19.81% 32.58% 13.80% 17.0% 53.30% 64.88%
T5NL [7] 21.28% 33.84% 28.40% 25.90% 55.30% 66.51%
T5NL+YL 21.36% 34.23% 21.80% 18.40% 55.37% 66.54%

The results with pre-training (also) involving English documents
(T5NL and T5NL+YL) are always the best or the second-best in class,
with performance very close to each other. Noteworthy, the useful-
ness of pre-training on English text when dealing with software-
related tasks has been already documented in the literature [50]
and is likely due to the vast presence of English terms in the code.
Both T5NL and T5NL+YL models achieve the best performance on
the abstracted workflows, with a percentage of correct predictions
of around 21% for the 𝑁𝑆𝑡𝑎𝑠𝑘 task and 34% for the 𝐽𝐶𝑡𝑎𝑠𝑘 task.

Two observations can be made here. First, in the 𝐽𝐶𝑡𝑎𝑠𝑘 task, T5
is more successful thanks to the additional context provided before
triggering the prediction (i.e., the skeleton of the job defined by the
developer—see Section 3.3.2).

Second, the abstraction seems to substantially boost the model’s
performance, with ∼4% of additional correct predictions for the
𝑁𝑆𝑡𝑎𝑠𝑘 task and ∼8% in the 𝐽𝐶𝑡𝑎𝑠𝑘 task.

Table 4 statistically compares the correct predictions achieved
using the four different pre-training strategies for the two tasks and
the two workflow representations (raw and abstract). Confirming
what was said above, the performance of T5NL and T5NL+YL is
always significantly better (adjusted 𝑝-value < 0.001) compared to
the non-pre-trained models (T5NO−PT ) and to the ones pre-trained
using YAML files only (T5YL), with ORs going from 1.49 up to 4.88.
The difference between T5NL and T5NL+YL is never statistically
significant, showing that the two models are almost equivalent.
This is an important finding because it means that an English pre-
trained model can be simply fine-tuned to successfully accomplish
the task (this is way less demanding than retraining the model).
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Table 4: Effect of different pre-training strategies on perfor-
mance: results of McNemar’s test.

Dataset Task Comparison p-value OR

Raw Tokens

𝑁𝑆𝑡𝑎𝑠𝑘

T5NL vs. T5NO−PT <0.001 4.88
T5NL vs. T5YL <0.001 1.95
T5NL vs. T5NL+YL 0.50 1.05
T5NL+YL vs T5YL <0.001 1.96

𝐽 𝐶𝑡𝑎𝑠𝑘

T5NL vs. T5NO−PT <0.001 3.60
T5NL vs. T5YL <0.001 1.59
T5NL vs. T5NL+YL 0.10 0.88
T5NL+YL vs T5YL <0.001 1.74

Abstracted Tokens

𝑁𝑆𝑡𝑎𝑠𝑘

T5NL vs. T5NO−PT <0.001 3.98
T5NL vs. T5YL <0.001 1.75
T5NL vs. T5NL+YL 0.69 0.96
T5NL+YL vs T5YL <0.001 1.88

𝐽 𝐶𝑡𝑎𝑠𝑘

T5NL vs. T5NO−PT <0.001 3.78
T5NL vs. T5YL <0.001 1.49
T5NL vs. T5NL+YL 0.05 0.86
T5NL+YL vs T5YL <0.001 1.70

The analysis of the BLEU and ROUGE metrics shown in Table 3
confirms the above-described finding, i.e., pre-training always helps,
in particular when leveraging English sentences.

Answer to RQ1. The pre-training boosts the performance of
GH-WCOM. Pre-training with English text (possibly along
with YAML files) helps to achieve the best performance.

In the following RQs we leverage the model pre-trained on Eng-
lish text and YAML files as the backbone of GH-WCOM.

Table 5: GH-WCOM vs 3-gram model when generating rec-
ommendations for the 𝑁𝑆𝑡𝑎𝑠𝑘

Dataset Comparison Metric p-value d OR

Raw tokens GH-WCOM vs. 𝑛-gram
Correct Predictions <0.001 - 17.69
BLEU-4 <0.001 0.51 (L) -
ROUGE-LCS <0.001 0.52 (L) -

Abstracted tokens GH-WCOM vs. 𝑛-gram
Correct Predictions <0.001 - 13.76
BLEU-4 <0.001 0.49 (L) -
ROUGE-LCS <0.001 0.50 (L) -

RQ2: How does GH-WCOM perform for different predic-
tion scenarios? Fig. 4 depicts the results achieved by GH-WCOM
and the best-performing 𝑛-gram model (3-gram) in terms of cor-
rect predictions, BLEU-4 and ROUGE-LCS. Due to the technical
limitations of the 𝑛-gram (i.e., it only considers the 𝑛 − 1 preceding
tokens when generating a prediction), such a comparison has been
performed only for the 𝑁𝑆𝑡𝑎𝑠𝑘 task.

Table 5 reports the results of the statistical comparison between
the two in terms of adjusted 𝑝-value and OR (for correct predic-
tions) and effect size (for BLEU and ROUGE). On both datasets,
GH-WCOM achieves statistically significant better results than the
baseline for all metrics. When looking at the correct predictions
the gap is of ∼11% on the raw dataset (5.10% vs 17.33%) and ∼12%
on the abstracted dataset (9.28% vs 21.36%). The OR is 17.69 (raw)
and 13.76 (abstract). An OR of 13.76 indicates ∼13 times higher
odds of obtaining a correct prediction using GH-WCOM. Even the
comparisons in terms of BLEU and ROUGE show the superiority
of GH-WCOM both visually (Fig. 4) and statistically (Table 5).

GH-WCOM achieves its best performance for the 𝐽𝐶𝑡𝑎𝑠𝑘 task,
with 34.23% of correct predictions (see Table 3), benefiting from
the additional contextual information provided as input. Truly,
one may question the usefulness of an approach that fails 66% of
the times. Nevertheless, as a term for comparison, the DL-based
approach recently proposed by Ciniselli et al. [18] for block-level
Java completion achieved ∼27% of correct predictions.

Answer to RQ2. GH-WCOM outperforms the 𝑛-gram base-
line for the 𝑁𝑆𝑡𝑎𝑠𝑘 task on all the considered metrics. The
gap in correct predictions is >11% on both the raw and the
abstracted dataset. The best performances are achieved for
the 𝐽𝐶𝑡𝑎𝑠𝑘 task (∼34% of correct predictions) thanks to the
additional contextual information provided as input.

RQ3: To what extent “wrong” recommendations provided
by GH-WCOM can be leveraged by developers? Fig. 5 depicts
the relationship between the percentage of correct and wrong
predictions when considering their confidence. Due to space lim-
itations, we only focus our discussion on the most challenging
scenario, namely 𝑁𝑆𝑡𝑎𝑠𝑘 , as the findings for 𝐽𝐶𝑡𝑎𝑠𝑘 are similar
(complete results in [6]). The orange line shows the percentage of
correct predictions within each confidence interval, e.g., 68.45% of
predictions having confidence between 0.8 and 0.9 are correct when
working with the raw code. In contrast, the red line shows the per-
centage of wrong predictions within each confidence bucket. Fig. 5
shows a clear relationship between the confidence of the predic-
tions and their likelihood of being correct. For example, out of the
1,076 predictions generated with confidence >0.9 in the abstracted
dataset, 959 (89.13%) are correct.

This result has an important practical implication: By setting a
threshold on confidence, it would be possible to filter out recom-
mendations likely to be false positives and only notify the developer
when the model is quite confident about the generated prediction.
As previously said, the results for the 𝐽𝐶𝑡𝑎𝑠𝑘 are in line with those
discussed for 𝑁𝑆𝑡𝑎𝑠𝑘 . For example, 89.03% of the 2,908 predictions
having confidence >0.9 are correct in the abstracted dataset. A
similar percentage is achieved on the raw dataset (89.13%).

Concerning the manual analysis of a sample of 384 comple-
tions “wrongly” predicted by GH-WCOM (i.e., the prediction did
not match the expected target), we found that: (i) 41.41% (159) are
actually wrong, since the predicted code would implement a dif-
ferent behavior than the ground-truth; (ii) in 25.52% (98) of the
cases, GH-WCOM suggested the correct action/script command
yet with wrong arguments; (iii) 28.13% (108) of predictions would
require minor changes, implying, on average, changing (i.e., inser-
tion and/or deletion) ∼11 characters in the recommended output
in order to align with the ground truth; and (iv) 4.95% (19) feature
a wrong or missing action name, i.e., just missing documentation.
While the complete results of our manual inspection are available
in our replication package [6], Fig. 6 shows two concrete examples
of the instances we inspected. The left part of Fig. 6 1 shows an
example in which the whole step is correctly predicted, with the
exception of the name which is different from the expected one
(Set up Python vs Python) but still meaningful.
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Figure 4: Results achieved by GH-WCOM and the 𝑛-gram model when predicting actions for 𝑁𝑆𝑡𝑎𝑠𝑘
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Figure 5: Correct and wrong predictions by the confidence of
GH-WCOM when generating recommendations for 𝑁𝑆𝑡𝑎𝑠𝑘

The right part 2 depicts a case in which the only difference
between the predicted and the expected step is the version of a
specific action to use (@v2 vs @v3). In both cases, the developer is
still likely to benefit from the prediction.

Example of Recommended Actions by GHAR

- name: Python ${{ matrix.python-version }}
      uses: actions/setup-python@v2
      with:
        python-version: ${{ matrix.python-version }}

- name: Set up Python ${{ matrix.python-version }}
      uses: actions/setup-python@v2
      with:
        python-version: ${{ matrix.python-version }}

INPUT

TARGET

PREDICTION

- uses: actions/cache@v3
     id: yarn-cache 
     with:
       path: ${{ steps.yarn-cache-dir-path.outputs.dir }}
       key: ${{ runner.os }}-yarn-${{ 
                         hashFiles('**/yarn.lock') }}
       restore-keys: |
          ${{ runner.os }}-yarn-

- uses: actions/cache@v2
     id: yarn-cache 
     with:
       path: ${{ steps.yarn-cache-dir-path.outputs.dir }}
       key: ${{ runner.os }}-yarn-${{ 
                         hashFiles('**/yarn.lock') }}
       restore-keys: |
          ${{ runner.os }}-yarn-

INPUT

TARGET

PREDICTION

1 2
name: Unit Test

on:
  push:
    branches:
      - "master"
  pull_request:

jobs:
  unit-tests:
    name: Unit Tests on Node ${{ matrix.node }}
    runs-on: ubuntu-latest
    
 strategy:
      matrix:
        node: [16, 18]

    steps:
      - uses: actions/checkout@v2
      …
    <TO_BE_PREDICTED>    

name: Daily Testing

on:
  schedule:
    # Runs "at minute 55 past every hours”
       (see https://crontab.guru)
    - cron: '5 4 * * 2,4,6'

jobs:
  build:
    runs-on: ${{ matrix.os }}

    strategy:
      fail-fast: false
      matrix:
        os: [ubuntu-latest, windows-latest]
        python-version: [3.6, 3.9]

    steps:
    - uses: actions/checkout@v2              
      <TO_BE_PREDICTED>                      

Figure 6: Examples of GH-WCOM’s recommended actions
extracted from the manual investigation we performed

Answer to RQ3. The confidence of the predictions can serve
as a trustworthy indicator of their correctness when auto-
completing GitHub workflows; ∼50% of predictions differing
from the expected target but on which the model has high
confidence could still be valuable for developers.

5.1 Why not just using a state-of-the-art
chatbot or code recommender?

Large Language Models (LLMs) have opened up new possibilities
even in the field of software engineering. One such application
is GitHub Copilot [2], developed by Microsoft using the OpenAI
Codex model. Copilot is a state-of-the-art tool for recommending
code completion and generation tasks. Similarly, OpenAI’s ChatGPT
[1] showed remarkable performance in generating human-like text
responses to prompts, even for code-related tasks.

We conducted a study to investigate the potential of these tech-
niques for supporting auto-completion in GitHub workflows. We
tested both tools on 60 instances in our test set by randomly select-
ing: (i) 15 workflows with the highest confidence score for which
GH-WCOM provided correct predictions; (ii) 15 workflows with the
highest confidence score for which GH-WCOM failed to provide
meaningful recommendations; (iii) 15 workflows with the lowest
confidence score for which GH-WCOM provided correct predic-
tions; and (iv) 15 workflows with the lowest confidence score for
which GH-WCOM failed to provide meaningful recommendations.

Concerning the high-confidence scenario, GitHub Copilot was
able to provide correct recommendations for 7 of the 15 instances
successfully predicted by GH-WCOM. For 2 instances, Copilot did
not suggest any token, and for 6 instances, it provided incorrect
recommendations. In contrast, when it came to the 15 instances for
which GH-WCOM generated incorrect recommendations, Copilot
correctly recommended only 2 of them and failed to provide mean-
ingful recommendations for the remaining 13. Regarding ChatGPT,
we observed that, out of the 15 instances correctly predicted by GH-
WCOM, the chatbot can only suggest 4 meaningful GitHub work-
flow completions, while providing incorrect action elements/scripts
for the remaining 11 instances.



Conference’17, July 2017, Washington, DC, USA Antonio Mastropaolo, Fiorella Zampettti, Gabriele Bavota, and Massimiliano Di Penta

We then tested ChatGPT on the instances where GH-WCOM
failed, we found that for 13 out of 15 workflows, the recommended
actions were incorrect, and, for 2 instances, ChatGPT was unable
to respond to our query.

As for the GH-WCOM low-confidence instances, also Copilot and
ChatGPT poorly performed on such instances. For the 15 successful
predictions generated by GH-WCOM, Copilot succeeds in only 4
and ChatGPT in only 3 of them. Copilot and ChatGPT also fail in
all 15 cases for which GH-WCOM provides a wrong output.

6 THREATS TO VALIDITY
Construct validity. One potential threat arises from the collection
of our dataset, as we excluded workflows longer than 1,024 tokens.
As mentioned earlier, it is a common practice to limit the input
size of DL models to manage training complexity effectively. We
recognize that using different thresholds could yield varying results,
and we acknowledge this as a potential limitation.

Another concern involves the extent to which the masking is
representative of what programmers do during their tasks [26]. We
have simulated two scenarios,𝑁𝑆𝑡𝑎𝑠𝑘 and 𝐽𝐶𝑡𝑎𝑠𝑘 , representative of
when developers write steps sequentially or code them after sketch-
ing their documentation. To evaluate the quality of the predictions,
we used consolidated measures such as the percentage of correct
predictions, BLEU-4 [43, 45], and ROUGE score. Furthermore, we
complemented such measures qualitative analyses.

In an attempt to help the model learning, we employed an ab-
straction schema in which five types of tokens are abstracted with
special placeholders. The goal of our abstraction process was to
identify a sort of upper-bound for the capabilities of our approach
in a best case scenario, in which all tokes being e.g., a path would be
replaced with the same ⟨PATH⟩ placeholder. Such a simplification
pushes more effort on the developer’s side while, however, simpli-
fying the learning, and thus representing an upper bound in terms
of prediction performances (with the lower bound represented by
the raw predictions). We acknowledge that alternative (and less
extreme) solutions are possible; for example, distinct paths appear-
ing within the same workflow could be abstracted with different
placeholders (e.g., ⟨PATH1⟩, ⟨PATH2⟩) with the model expected
to use the same placeholder for related paths (i.e., the same path
appearing multiple times in the workflow). As part of our upcom-
ing work agenda, we anticipate conducting user studies to assess
different abstraction techniques as alternatives.

Internal validity. One key issue for DL models is the hyperpa-
rameter tuning, which we detailed in Section 3.3.2. We are aware
that we could not consider all possible (combinations of) values for
that. Also, the performances of a T5 model could largely depend on
how it has been pre-trained. To mitigate this threat, we have shown
how GH-WCOM works by leveraging different pre-trainings.

Conclusion validity. To address the RQs, wherever appropriate
we use suitable statistical tests (McNemar’s test and Wilcoxon
signed rank test) as well as effect size measures (OR and Cliff’s
delta). In the qualitative analysis of RQ4, we computed and reported
Cohen’s kappa inter-rater agreement.

External validity.We experiment GH-WCOM with a T5𝑠𝑚𝑎𝑙𝑙

model. We acknowledge that our choice of the specific model ar-
chitecture to use could affect the generalizability of our findings.

For example, larger T5 versions [44] could lead to different per-
formance. We performed a minimal check of how scaling up the
model could affect our findings. To this aim, we trained a T5𝑏𝑎𝑠𝑒
model [44] using the T5NL+YL setting and the same training pro-
cess used for T5𝑠𝑚𝑎𝑙𝑙 : We further pre-trained the publicly released
T5𝑏𝑎𝑠𝑒 checkpoint (pre-trained on natural language) for 300k steps
on YAML files and then fine-tuned it on the GitHub workflows.
We used the same learning rate scheduler used for T5𝑏𝑎𝑠𝑒 (i.e.,
ISQ-LR). The achieved results show that scaling up the model size
from 60M to 220M parameters yields negligible improvements in
comparison to T5𝑠𝑚𝑎𝑙𝑙 . When employing a T5𝑏𝑎𝑠𝑒 architecture
to recommend actions in the most demanding scenario (𝑁𝑆𝑡𝑎𝑠𝑘
), the difference in correct predictions is a +0.18% (21.54%) and a
+0.47% (17.80%) for the raw and abstracted datasets, respectively.
When incorporating contextual information into the model (𝐽𝐶𝑡𝑎𝑠𝑘
), similar conclusions arise (up to +0.67% of correct predictions).
Furthermore, while we applied GH-WCOM for GitHub workflow
completion, with proper training/fine-tuning, GH-WCOM could be
applied to CI/CD pipelines developed with different technologies,
e.g., Jenkins or GitLab.

7 RELATEDWORK
We discuss literature on automated code completion (which has
commonalities with GitHub workflow auto-completion. In particu-
lar, we discuss work about task-oriented and pre-trained models.

7.1 Task-Oriented models for Completing Code
Li et al. [32] introduce a pointer mixture network improving the
accuracy of predicting Out-of-Vocabulary (OoV) words. The pointer
mixture network can determine whether to create a word within
the vocabulary using an RNN component or reconstruct an OoV
word based on the local context using a pointer component.

Alon et al. [8] propose a language-agnostic approach for code
completion which uses the syntax to model a code snippet as a tree.
Their model predicts the next token in a partial expression repre-
sented by an AST, achieving an exact match accuracy of 18.04%.

Chen et al. [12] focus on recommendaing APIs. Their approach
employs a DL technique integrating structural and textual code
information with the use of an API context graph and code token
network. Their model outperforms existing graph-based statistical
and tree-based DL methods for API recommendation.

Avishkar et al. [10] propose a neural language model suggesting
code in Python using a sparse pointer network to capture long-
range relationships among identifiers. Aye and Kaiser [9] introduce
a new language model that predicts the next top-k tokens while
taking into account real-world constraints, including prediction
latency, model size and memory usage, and suggestion validity.
Svyatkovskiy et al. [49] propose a learning-to-rank approach for
code completion, which is cheaper in terms of memory footprint
than generative models.

7.2 Pre-trained Models for Code Completion
Svyatkovskiy et al. [48] introduce IntelliCode, a multilingual code
completion tool that predicts sequences of arbitrary token types
using subtokens to overcome the OoV problem [51].
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Liu et al. [36] propose a pre-trained Transformer incorporating
two tasks: (i) program understanding and (ii) code generation. The
model has been fine-tuned to predict the next code token to write.

Kim et al. [30] use the Transformer architecture by incorporating
the syntactic structure of the code to further advance the state-of-
the-art next-token prediction by margins ranging from 14% to 18%
when compared to previous techniques.

Ciniselli et al. [18] examine the effectiveness of Transformer-
based models in completing code with varying degrees of com-
plexity. T5 results to be the best model for recommending code
completion across different complexities, with an accuracy of ∼29%
when predicting entire code blocks.

Our work shares with the aforementioned ones, and in particular
with the one by Ciniselli et al. [18], the use of transformer archi-
tectures, and T5 in particular. That being said, unlike many source
code artifacts, a GitHub workflow features several elements that are
extremely project-specific, e.g., dependencies, configuration files,
hardware and software configurations to be tested. As detailed in
Section 3.2, this has required a complex abstraction process. Last,
but not least, the completion scenarios are different from the ones
for the source code. For the former one mainly wants to generate
the next statement, block, or code construct. For the latter, elements
to generate are either job steps (combinations of natural language
descriptions, actions, and script calls) or the implementation of a
job specified in terms of its names.

LLMs such as GPT-3 [11] or GPT-4 [42] have propelled code com-
pletion techniques to new heights. GitHub Copilot [15] is a prime
example of this advancement in the field. On a similar note, OpenAI
in November 2022 released ChatGPT [1], which showcased remark-
able abilities even when dealing with code-related tasks. While we
did not use LLMs for feasibility and parsimony reasons, yet, we
provide some evidence showing that GitHub workflow completion
is a challenging task for them as well. Also, GH-WCOM can be
evolved to replace T5 with LLMs featuring billions of parameters.

8 CONCLUSION AND FUTUREWORKS
This paper tackled the problem of automatically completing CI/CD
pipeline scripts, and, in particular, GitHub workflows. We proposed
GH-WCOM, an approach based on T5 [44] pre-trained models to
automatically recommend workflow completions in different sce-
narios, i.e., predicting the next step (𝑁𝑆𝑡𝑎𝑠𝑘 ), or filling a workflow
job given its textual documentation, i.e., the names (𝐽𝐶𝑡𝑎𝑠𝑘 ).

Our empirical analysis found that (i) leveraging a pre-training
involving English text (possibly complemented by YAML files) al-
ways helps, (ii) the performance of best models range from 17.47%
(𝑁𝑆𝑡𝑎𝑠𝑘 task) and 26.35% (𝐽𝐶𝑡𝑎𝑠𝑘 task) for raw correct predictions,
to 21.36% (𝑁𝑆𝑡𝑎𝑠𝑘 ) and 34.23% (𝐽𝐶𝑡𝑎𝑠𝑘 ) for abstracted correct
predictions; and (iii) the model confidence correlates with the like-
lihood of generating a correct prediction. Finally, GH-WCOM is
competitive for context-sensitive completion tasks when compared
to LLM-based tools such as CoPilot [2] and ChatGPT [1].

Future work aims to experiment with alternative DL models,
and, possibly, incorporate developers’ feedback in the GH-WCOM’s
learning (e.g., by using reinforcement learning).
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