
UnityLint: A Bad Smell Detector for Unity
Matteo Bosco,

Pasquale Cavoto,
Augusto Ungolo

University of Sannio
Benevento, Italy

Biruk Asmare Muse,
Foutse Khomh

Ecole Polytechnique de Montréal
Montréal, Quebec, Canada

Vittoria Nardone,
Massimiliano Di Penta

University of Sannio
Benevento, Italy

Abstract—The video game industry is particularly rewarding
as it represents a large portion of the software development
market. However, working in this domain may be challenging
for developers, not only because of the need for heterogeneous
skills (from software design to computer graphics), but also for
the limited body of knowledge in terms of good and bad design
and development principles, and the lack of tool support to assist
them. This tool demo proposes UnityLint, a tool able to detect
18 types of bad smells in Unity video games. UnityLint builds
upon a previously-defined and validated catalog of bad smells
for video games. The tool, developed in C# and available both
as open-source and binary releases, is composed of (i) analyzers
that extract facts from video game source code and metadata,
and (ii) smell detectors that leverage detection rules to identify
smells on top of the extracted facts.

Tool: https://github.com/mdipenta/UnityCodeSmellAnalyzer
Teaser Video: https://youtu.be/HooegxZ8H6g
Index Terms—Video game development; Unity; Bad smells;

Static analyzer

I. INTRODUCTION

While the pandemic period caused considerable losses to
the global economy, the video game industry has continued
to grow in a remarkable way [1]. In fact, the global video
game market size is expected to expand at a compound annual
growth rate (CAGR) of 12.9% from 2022 to 2030.

Developing video games follow practices that differ from
conventional software development [2]–[4], as it requires
specific skills and knowledge, often going beyond the common
knowledge of a developer working on conventional software.
During video game development, developers face several video
game-specific aspects, e.g., reproducing/simulating the envi-
ronment’s physics, animating objects, and rendering special
effects. Such aspects make video game design and develop-
ment complex and could negatively affect the quality (e.g., in
terms of performance) and development of produced software
(e.g., increasing maintenance costs). In this context, developers
may need suitable guidance concerning good (and bad) design
and development principles, but also appropriate tool support,
e.g., through analyzers helping them to avoid introducing
performance bottlenecks, or making the game difficult to
maintain and evolve.

The research community has investigated the application
of design principles to video game development [5]–[11],
and found that conventional code smells fail to capture all
quality problems of video game source code [12]–[14]. For this
reason, we first conceived a preliminary approach to detect five

types of bad smells in Unity [15]. Then, we defined a catalog
of 28 bad smells related to video game development [16], by
manually analyzing developers’ discussions on game engine
forums, and by validating them through a survey with video
game development professionals.

In this paper, we leverage this catalog and some of the pre-
viously defined smell detection approaches [15], and propose
UnityLint, a tool to detect video game smells for the Unity
video game development framework [17]. We target Unity
since it is one of the most popular cross-platform game engines
[18]. More specifically, UnityLint detects 18 bad smells out
of the 28 (+1 reported in the survey, i.e., Use of anystate in
animator controller) defined in the catalog [16].

UnityLint works in two stages. First, analyzers extract facts
from the video game source code (C#) and metadata. Then,
the smell detector identifies smells by leveraging detection
rules on the extracted facts. UnityLint has been conceived as
a command line tool, yet the way it has been designed makes
it possible to integrate it in continuous integration workflows
(e.g., in a GitHub action), or else a graphical front-end for
IDEs. The tool has been preliminary evaluated using 70 Unity
open-source projects.

There are different scenarios in which UnityLint could be
used by both practitioners and researchers:

• Practitioners can leverage the tool during their develop-
ment activities, e.g., to produce warning reports or to even
fail the build.

• Researchers can leverage the tool to conduct an empirical
investigation on video game bad smells, on the same
lines of how similar studies have been conducted for
conventional software [19], [20].

• UnityLint can be easily extended in different ways. On

Unity
Project

Code
Analyzer

Unity Data
Analyzer

Fact
Extractor

Smell
Detector

Extracted
Facts (JSON)

Detected
Smell Report

Code Smell
Detector

Meta Smell
Detector

Fig. 1. UnityLint architecture

the one hand, it could be possible to implement further
analyzers to support different programming languages
and video game development frameworks. On the other
hand, it is possible to add detectors for further smells.

UnityLint is available as open-source under the MIT License
on GitHub 1, and also released in the form of binaries.

II. A SMELL DETECTOR FOR UNITY

Fig. 1 depicts the workflow of UnityLint. The tool consists
of two main components: (i) Fact Extractor, which extracts
and collects data needed for smell detection. This goal is
achieved by analyzing source code and metadata files, storing
the extracted facts in JSON files, and (ii) Smell Detector
which, by taking as input the JSON files produced by the
Fact Extractor, leverages detection rules for identifying video
game smells. This two-steps architecture has multiple advan-
tages. First, it facilitates the definition of new detection rules,
implemented by querying the JSON files directly or through
helper APIs (e.g., to search for variable definition/usage,
methods, etc.) the tool makes available, or even developing
a detector based on machine learning approaches. Second,
by implementing an analyzer that produces a compatible
intermediate representation, it would be possible to apply the
rules (sometimes as they are, sometimes with small changes)
to analyze games developed with other game engines and
programming languages. Last, but not least, the extracted facts
can be leveraged for other purposes.

The Fact Extractor is composed of a Code Analyzer and a
Unity Data Analyzer. The Code Analyzer parses the C# source
code and produces a JSON representation containing infor-
mation such as imported libraries, class structures, variables
definition, and usages, or invoked functions. The Unity Data
Analyzer processes files related to Unity assets often created
from its IDE. These include scene files (containing static game
objects and their dependencies), prefabs (i.e., reused objects)
animations, and other assets.

The Smell Detector is composed of a Code Smell Analyzer
and a Meta Smell Analyzer and they implement rules described
in Table I to identify the video game smells. In the current im-
plementation, the tool detects 18 different video game smells
among those empirically defined in a previous work [16].
Out of the 28 smells defined by [16], we did not implement
11 smells, either related to problems (mostly rendering and
animation-related) that could not be detected by statically
analyzing code and metadata, or to Unity modules (multiplayer
in particular) currently being deprecated and replaced. Plus, we
implemented a smell (use of anystate in animators) not part of
the catalog but suggested by a practitioner during the catalog
validation.

UnityLint is implemented in C# language and for the source
code analysis leverages the Roslyn [21] compiler and its
API. It works natively on the Windows operating system, or,
through Mono [22], on Linux and MacOS.

1https://github.com/mdipenta/UnityCodeSmellAnalyzer

Table I describes the detected smells, divided into their
categories, and details the detection rule defined to identify
them. The last two columns report the results of a preliminary
evaluation.

III. UNITYLINT IN ACTION

UnityLint can be used in two ways, i.e., through its wrapper
(named ShellStarter), that runs the whole toolchain on a
given folder (which contains a Unity project), or (ii) running
the single components (Code Analyzer, Unity Data Analyzer,
Code Smell Analyzer, and Meta Smell Analyzer) individually.
The former is useful to run UnityLint with default options
and to analyze multiple projects (e.g., to conduct a study),
whereas the latter can be useful to specify advanced options
of individual tools (e.g., restrict the set of smells to use, or
change the output options), or if one is interested in using
only some of them. In the first case, the tool can be executed,
for example, by running (“mono” is only for *nixes OSs):
mono UnityLinter/ShellStarter.exe -d

/games/ -v
where the -d switch specifies the directory where
the Unity projects to analyze are located, and -
v enables the verbose output (otherwise the tool is
silent). UnityLint stores both the intermediate outputs
in the Results/Examples directory. For example, the file
Results/Example/Code/CodeAnalysis.json
stores the result of source code analysis in JSON.
Listing 1 shows an excerpt related to a method invocation
(cubeRef.transform.Rotate).

{ "Name": "Update",
....

"ReturnType": "void",
"Parameters": [],
"Invocations": [
"Name": "cubeRef.transform.Rotate",
"FullName": "cubeRef.transform.Rotate",

Listing 1: CodeAnalysis.json excerpt (method invocation)

Under Results/Example/Code/SmellResults,
the tool creates a JSON file for each code smell type,
for example Listing 2 shows a weak temporization due to
the invocation of a transform without Time.deltaTime
scaling, and obtained by analyzing a longer version of the
code in Listing 1.

"Name": "Weak Temporization",
"Occurrency": 1,
"Smells": [

{ "Script": "..../RotateCube.cs",
"Name": "Update",
"Line": 17 }

]

Listing 2: Example of weak temporization detection

Listing 3 shows an example of data extracted by the
Unity Data Analyzer from the Unity assets and stored under
Results/Data/mainResults, in this case some proper-
ties of a Rigidbody attached to a game object (i.e., the use

TABLE I
SMELLS DESCRIPTION AND DETECTION RULES.

Name Description Rule Pr Rc
Design and Game Logic

Bloated assets Reusable assets containing a suspiciously high
number of components

The number of total components into metadata is
greater than a threshold value

100% 100%

Creating compo-
nents/objects at
run-time

Game objects are created/destroyed at every
frame instead of using an object pool

Instantiate and Destroy methods in Update(),
FixedUpdate(), or LateUpdate() methods

100% 100%

Dependencies between
objects

There is a strong dependency between all classes
present in the scripts

All local and instance variables in conjunction with
GetComponent methods invocations and variables
types belong to other classes

86% 93%

Lack of separation of
concerns

The game logic does not clearly separate con-
cerns related to inputs, physics, rendering, etc.

Use, in the same script, of different Unity modules,
e.g., animators and inputs

54% 75%

Poor design of object
state management

Complex game object state management without
using appropriate design solutions, e.g., the state
pattern

Nested and complex conditional statements (i.e., if,
if-else, switch-case) within the game’s main loop

69% 92%

Static coupling Dependencies between gameobjects created visu-
ally through the IDE

Identification of [SerializedField] object attributes
and analysis of dependencies in Scene metadata

78% 97%

Search by string/ID Game objects/components are searched at run-
time using their string identifier/tag

Game objects/components are searched using Find
methods within the game main loop

100% –

Singleton vs. static Use of singleton where a static variable would
just suffice

Detection of singleton design pattern by checking
the class constructor and attributes

100% –

Weak temporization
strategy

Game object transform depends on the frame rate Update() and dependent methods use transform
without scaling values with Time.deltaTime

86% 100%

Animation
Continuously checking
position/rotation

A game continuously checks whether the object
is within a boundary

Checking (directly or indirectly) a transform posi-
tion/rotation parameters into conditional statements
within the game’s main loop

– –

Multiple Animators
over model component

A game object uses multiple animators or compo-
nents handling animations for the same reusable
object

Searching for game objects having more than one
Animator or animation-related components

100% 100%

Too many key frames
in animations

An animation contains too many keyframes Into animation metadata, the variable m Curve has
a number of time values greater than a threshold

100% 100%

Use of anystate in ani-
mator controller

Animators have transitions that can start from an
undetermined state

Presence of outgoing state transitions from anystate
state

100% 100%

Physics
Heavyweight physics
computation

A game performs heavyweight physics computa-
tion in ints main loop

Checking if the game object physic is modified
within the Update method

100% 100%

Improper mesh set-
tings for a collider

A sub-optimal choice of collider for a game
object

Using collider custom (i.e., Mesh Collider) instead
of simple collider type provided by Unity

100% 100%

Setting object velocity
and override forces

Objects’ velocity is directly modified, instead of
operating through Forces/Physics

The values of velocity and/or angularVelocity of a
Rigidbody object are directly modified into scripts

– –

Rendering
Lack of optimization
when rendering ob-
jects

Object drawing/rendering not properly optimized Searching (in the metadata) for the
m EnableRealtimeLightmaps parameter with
an assigned value greater than 0

100% 100%

Sub-optimal,
expensive choice
of lights, shadows, or
reflections

Some lights that can be baked are, instead, ren-
dered in real-time, or when there is excessive
usage of (unnecessary) shadows and reflections

Static (not animated) object emitting a real-time
light; Objects with animation script emitting a
baked light

100% 100%

of gravity and a collision detector set to 2, i.e., continuous-
dynamic). Then, under
Results/Example/Data/MetaSmellResults,

the tool creates a JSON file for each smell detected from the
Unity meta data, for example, Listing 4 shows an example of
heavy physics computation (also) resulting from the analysis
of the facts reported in Listing 3.

If one wants to run the tools individually (recommended to
set specific options), for example the command:
mono CSharpAnalyzer.exe -p projects/War

-s -r MyRes

which executes the source code analysis analyzing the project
(-p) in the directory projects/War, embedding the raw text
of statements (-s) in the JSON output near each construct
storing results (-r) in the MyRes directory. Then,
mono CodeSmellAnalyzer.exe -d

MyRes1/CodeAnalysis.json -f smellList.txt
-r MyRes1

detects code smells from the results of the code analysis
specified by the -d option. The -f option allows specifying
a (restricted) list of smells to detect.

The Unitty Data Analyzer can be invoked using:

guid": "65d94dcccbb9e4c46962c78ae98ca414",
"file_path": ".../Cylinder.prefab",
"name": "Cylinder",
"type": "prefab",
.....
"id": "7942783696874373333",
"Rigidbody": [
....
{ "m_UseGravity": "1" },
{ "m_CollisionDetection": "2"}
...

Listing 3: Example of Rigidbody data

guid": "65d94dcccbb9e4c46962c78ae98ca414",
"file_path": ".../Cylinder.prefab",
"name": "Cylinder",
"type": "prefab",
...

Listing 4: Example of heavy physics computation

mono UnityDataAnalyzer.exe -d
projects/War/Assets/Prefabs -r out

In this case, we specify the assets to be analyzed, and
are only analyzing the Prefabs from the project (and not
other assets). Finally, the smell detector for metadata can be
executed through the command:
mono MetaSmellAnalyzer.exe -d out -c -r

outDataSmells
Further details about the syntax of the individual tools can be
found in the project README file.

IV. PRELIMINARY EVALUATION

We have performed a preliminary evaluation of UnityLint.
To evaluate the precision, we have detected smells on 70
open-source Unity projects hosted on GitHub. More in detail,
we selected C# projects with more than 100 commits and at
least one commit since October 2021, and excluded forks to
avoid duplicates. We queried projects using the tool provided
by Dabic et al. [23]. Then, the subset obtained using the
above query is further filtered using the project topic list. We
selected projects with videogame-related topics, in particular
“Unity” and “Videogame”. Finally, the remaining projects are
manually inspected to select only projects developed using
Unity Engine.

Then, we ran UnityLint on the projects. For the smells
that require a threshold (e.g., Too many key frames, see the
README in the tool repository) we considered the third
quartile of the values measured in the repository. From the
detected smells, we extracted a statistically significant (95%
confidence level, ±5% confidence interval) sample of 377
smells, stratified over the smell types.

It should be underlined that we computed this sample ex-
cluding the occurrences of the Dependency Between Objects’
smell. We excluded it since this type of smell has a high num-
ber of occurrences compared with other types and including
this number into the computation of a statistically-significant
sample resulted in an unbalanced stratified sample, i.e., the
majority of samples to validate belonged to this type of smell
leaving the other type with a few numbers of samples. Thus,

we assessed Dependency Between Objects’ smell separately
from the other smell types, randomly selecting for it 290
samples (95% confidence level, ±5% confidence interval from
the population of that smell). In total, we manually validated
667 samples.

The precision assessment has been performed by two au-
thors not involved in the tool implementation. The two authors
independently assessed each smell in the sample and discussed
disagreements. We computed the Cohen’s k [24] inter-rater
agreement which resulted to be 0.56 (moderate).

To evaluate the recall, three authors manually inspected 6
projects (by looking at the source code and visually inspecting
the other artifacts through the Unity IDE) to identify possible
smells. The manually identified smells were then compared
against those detected by UnityLint.

Table I reports the precision (Pr) and the recall (Rc), for
each smell type, achieved on the manually analyzed instances.
As the table shows, besides the generally good performances,
there are some smells that were not detected in our dataset.
Therefore, for them we do not have an empirically-assessed
accuracy, yet we have carefully tested the detectors through
multiple code examples. Also, for some smells (Lack of sepa-
ration of concerns or Poor design of object state management)
the precision is lower. For the former, UnityLint indicates
possible excesses of mix-ups (e.g., controller handling and
animations in the same script), yet some of them could be
intentional and hard to separate. For the latter, we notice
(further studies are needed though) how developers simply
prefer to design game state management with cascades of
conditional statements. Also, we plan to improve the detection
of these smells with further heuristics.

We also computed micro and macro precision and recall,
where micro precision and recall weigh the occurrences of
different smells (i.e., the numerator is the number of true
positives of that class), whereas macro precision and recall
are the mean precision and recall across the different smells.
Their values are 78% micro precision, 92% macro precision,
94% Micro Recall, and 85% macro recall.

V. CONCLUSION AND FUTURE WORK

This paper described UnityLint, a smell detector toolkit
for Unity. UnityLint is based on a subset of an empirically
derived catalog of bad smells for video games [16]. UnityLint
detects 18 smells among those defined in the catalog, and in a
preliminary evaluation has achieved a micro-precision of 78%,
a macro-precision of 92%, a micro-recall of 94%, and a macro-
recall of 85%.

UnityLint can be used by developers as a linter, e.g., by
integrating it in continuous integration pipelines, as well as
by researchers for studying the quality of Unity projects.

Future work aims at (i) further improving the detection
rules, (ii) detecting further smells, (iii) porting the tool to other
video game development frameworks (e.g., Unreal).

REFERENCES

[1] Grand View Research, “Video game market size, https://www.
grandviewresearch.com/industry-analysis/video-game-market (last ac-
cess: 20/12/2022),” 2022.

[2] B. B. Marklund, H. Engström, M. Hellkvist, and P. Backlund, “What
empirically based research tells us about game development,” Comput.
Games J., vol. 8, no. 3-4, pp. 179–198, 2019. [Online]. Available:
https://doi.org/10.1007/s40869-019-00085-1

[3] E. R. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys,
ankle sprains, and keepers of quality: how is video game development
different from software development?” in 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014. ACM, 2014, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/2568225.2568226

[4] A. V. Kamienski and C. Bezemer, “An empirical study of q&a websites
for game developers,” Empir. Softw. Eng., vol. 26, no. 5, p. 115, 2021.
[Online]. Available: https://doi.org/10.1007/s10664-021-10014-4

[5] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-oriented
design patterns in game development,” Information and Software Tech-
nology, vol. 49, no. 5, pp. 445–454, 2007.

[6] N. H. Barakat, “A framework for integrating software design patterns
with game design framework,” in Proceedings of the 2019 8th Interna-
tional Conference on Software and Information Engineering, 2019, pp.
47–50.

[7] G. R. Figueiredo and G. L. Ramalho, “Gof design patterns applied to
the development of digital games,” Proceedings of SBGames, vol. 15,
2015.

[8] X.-C. Kounoukla, A. Ampatzoglou, and K. Anagnostopoulos, “Imple-
menting game mechanics with gof design patterns,” in Proceedings of
the 20th Pan-Hellenic Conference on Informatics, 2016, pp. 1–4.

[9] J. W. Murray, C# game programming cookbook for Unity 3D. CRC
Press, 2014.

[10] R. Nystrom, Game programming patterns. Genever Benning, 2014.
[11] J. Qu, Y. Song, and Y. Wei, “Applying design patterns in game pro-

gramming,” in Proceedings of the International Conference on Software
Engineering Research and Practice (SERP). The Steering Committee
of The World Congress in Computer Science, Computer . . . , 2013, p. 1.

[12] V. Khanve, “Are existing code smells relevant in web games? an
empirical study,” in Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. ACM, 2019, pp. 1241–1243. [Online]. Available:
https://doi.org/10.1145/3338906.3342504

[13] V. Agrahari and S. Chimalakonda, “A catalogue of game-specific
anti-patterns,” in ISEC 2022: 15th Innovations in Software Engineering
Conference, Gandhinagar, India, February 24 - 26, 2022. ACM, 2022,
pp. 8:1–8:10. [Online]. Available: https://doi.org/10.1145/3511430.
3511436

[14] G. C. Ullmann, C. Politowski, Y. Guéhéneuc, F. Petrillo, and J. E.
Montandon, “Video game project management anti-patterns,” CoRR,
vol. abs/2202.06183, 2022. [Online]. Available: https://arxiv.org/abs/
2202.06183

[15] A. Borrelli, V. Nardone, G. A. Di Lucca, G. Canfora, and M. Di Penta,
“Detecting video game-specific bad smells in unity projects,” in MSR
’20: 17th International Conference on Mining Software Repositories,
Seoul, Republic of Korea, 29-30 June, 2020. ACM, 2020, pp. 198–208.
[Online]. Available: https://doi.org/10.1145/3379597.3387454

[16] V. Nardone, B. Asmare Muse, M. Abidi, F. Khomh, and M. Di Penta,
“Video game bad smells: What they are and how developers perceive
them,” ACM Trans. on Software Eng. and Methodology. [Online].
Available: https://mdipenta.github.io/files/tosem-gamesmells.pdf

[17] Unity, “Unity engine, https://unity.com (last access: 20/12/2022),” 2022.
[18] “2021 gaming report - unity, https://create.unity.com/2021-game-report,”

accessed: 2023-03-22.
[19] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De

Lucia, and D. Poshyvanyk, “When and why your code starts to smell
bad (and whether the smells go away),” IEEE Trans. Software Eng.,
vol. 43, no. 11, pp. 1063–1088, 2017.

[20] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De
Lucia, “On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation,” Empir. Softw. Eng., vol. 23,
no. 3, pp. 1188–1221, 2018.

[21] “The .net compiler platform (Roslyn API), https://learn.microsoft.com/
en-us/dotnet/csharp/roslyn-sdk/,” accessed: 2023-01-13.

[22] “Mono: an open source implementation of microsoft’s .net, https://www.
mono-project.com/,” accessed: 2023-01-13.

[23] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[24] J. Cohen, “A coefficient of agreement for nominal scales,” Educ Psychol
Meas., vol. 20, 1960.

