
On the Accuracy of GitHub’s Dependency Graph
Daniele Bifolco
University of Sannio
Benevento, Italy

Sabato Nocera
University of Salerno

Fisciano, Italy

Simone Romano
University of Salerno

Fisciano, Italy

Massimiliano Di Penta
University of Sannio
Benevento, Italy

Rita Francese
University of Salerno

Fisciano, Italy

Giuseppe Scanniello
University of Salerno

Fisciano, Italy

ABSTRACT
GitHub’s dependency graph shows dependency relationships be-
tween repositories. This feature is leveraged by tools such as De-
pendabot, or GitHub’s feature to export SBOM (Software Bill of
Materials) files. Also, it has been used in empirical studies. Inac-
curacies in the dependency graph might negatively affect both
the effectiveness of tools and the results of the conducted studies.
In this paper, we present the results of a mining study to assess
the accuracy of GitHub’s dependency graph in Java and Python
open-source software projects. In particular, on April 16𝑡ℎ , 2023, we
randomly sampled 297 software projects developed in Java and 338
developed in Python (all hosted on GitHub), each using GitHub’s
dependency graph. Then, we performed three analyses to assess
how accurate GitHub’s dependency graph is: (i) backward analysis,
focusing on the accuracy of the dependencies of a given repository,
as reported in GitHub’s dependency graph; (ii) forward analysis,
focusing on the accuracy of the dependents of a given repository,
as reported in GitHub’s dependency graph; and (iii) manifest/lock
file analysis, focusing on the correspondence between the depen-
dencies reported in the dependency graph of a given repository
and what was reported in the corresponding manifest/lock files.
The obtained results highlight several inaccuracies in GitHub’s de-
pendency graph, which might affect the output of tools based on
GitHub’s dependency graph (e.g., Dependabot and SBOM gener-
ators) as well as the outcomes of past empirical studies. We also
provide qualitative insights into these inaccuracies and implications
for practitioners and researchers.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories.

KEYWORDS
GitHub, Dependency graph, Empirical study
ACM Reference Format:
Daniele Bifolco, Sabato Nocera, Simone Romano, Massimiliano Di Penta,
Rita Francese, and Giuseppe Scanniello. 2024. On the Accuracy of GitHub’s
Dependency Graph. In 28th International Conference on Evaluation and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661175

Assessment in Software Engineering (EASE 2024), June 18–21, 2024, Salerno,
Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3661167.
3661175

1 INTRODUCTION
According to StackOverflow’s 2022 Developer Survey, GitHub is the
most popular version-control and software-development-hosting
platform for both personal and professional use [22]. GitHub’s users
receive a steady stream of new features regularly. Among the most
interesting features, there is one that, if enabled, allows showing the
dependency graph [6] for each repository/project hosted on GitHub.
In particular, such a kind of graph shows:

• the dependencies, namely the ecosystems and packages the
repository depends on;

• the dependents, namely the ecosystems and packages that
depend on the repository.

The dependency graph feature was introduced in 2017, yet only
recently it has been adopted by many projects.

The information about the dependencies/dependents of a repos-
itory is inferred from the manifest and lock files—i.e., files, such
as pom.xml for Maven or requirements.txt for pip, specifying
project build dependencies. Moreover, GitHub provides a feature to
explicitly list dependencies for a repository by using the dependency
submission API (beta). The dependency graph is automatically up-
dated when either a commit changing a (supported) manifest/lock
file to the default branch is pushed on GitHub or when anyone
pushes a change to a dependent repository.

GitHub’s dependency graph is leveraged by both researchers
and practitioners. On the research side, there exist several stud-
ies analyzing software ecosystems that leverage the dependency
graph [1, 12, 17, 18]. From the practitioner’s perspective, some tools
exploit GitHub’s dependency graph to attain dependencies among
software components. For example, Dependabot [7], monitors secu-
rity vulnerabilities in the dependencies of a given repository and
keeps the dependencies up-to-date. Based on statistics from 2022,
Dependabot has, so far, opened over 75 million pull requests [24].
Another example of tools based on GitHub’s dependency graph
is the one that allows generating SBOM (Software Bill of Materi-
als) files [9], released on GitHub in March 2023. Briefly speaking,
if a repository leverages Dependabot or uses the GitHub SBOM
generator, it inherently relies on the dependency graph.

Inaccurate information in the GitHub dependency graph would
compromise the results of any analysis based on it. As for De-
pendabot, this would reduce its ability to send alarms to the depen-
dents of vulnerable components, therefore opening them to security
threats. Similarly, an incorrect dependency graph may result in an

https://doi.org/10.1145/3661167.3661175
https://doi.org/10.1145/3661167.3661175
https://doi.org/10.1145/3661167.3661175


EASE 2024, June 18–21, 2024, Salerno, Italy Bifolco et al.

incomplete or incorrect SBOM file, leading to security issues and
licensing violations, in a scenario where the use of SBOMs has para-
mount importance [23, 26], given also the existing governmental
regulations—e.g., the US Federal Government, per Executive Order
14028, laid down that any company releasing software to federal
agencies must provide an SBOM for the released software [14].

To assess the accuracy of GitHub’s dependency graph, we con-
ducted a mining study on Java and Python open-source software
projects (all hosted on GitHub). We built two statistically significant
random samples, with a confidence level of 95% and a margin of
error of 5%, for a total of 635 software projects (297 developed in
Java and 338 developed in Python). Then, we analyzed the accu-
racy of GitHub’s dependency graph of these projects through three
quantitative analyses. First, we performed a backward analysis, fo-
cusing on the accuracy of the dependencies, as they are reported
in GitHub’s dependency graph of a given repository. Second, we
performed a forward analysis, focusing on the accuracy of the de-
pendents. Third, we performed amanifest/lock file analysis in which
we verified the correspondence between the dependencies reported
in GitHub’s dependency graph of a given repository and those
reported in the corresponding manifest or lock files.

We observed inaccuracies in GitHub’s dependency graph and
provided qualitative insights into these inaccuracies. Based on the
obtained results, we distilled practical implications for both re-
searchers and practitioners. The former should pay attention to
the dependency information provided by GitHub’s dependency
graph when conducting empirical studies based on it. The latter
should be aware that the inaccuracy of GitHub’s dependency graph
might impact the effectiveness of any tool built upon it, such as
recommenders, GitHub’s Dependabot, or GitHub’s feature to gen-
erate SBOM files. Finally, we deem that our qualitative insights
might serve the purpose of improving the accuracy of GitHub’s
dependency graph.

Paper Structure. In Section 2, we discuss research related to
ours. In Section 3, we show the design of our mining study. The
obtained quantitative results are reported in Section 4, while we
provide some qualitative insights in Section 5. The practical implica-
tions deriving from our results are discussed in Section 6 while the
threats that might affect the validity of our results are discussed in
Section 7. In Section 8, we conclude the paper and outline directions
for future work.

2 RELATEDWORK
In the following, we discuss related literature about studies leverag-
ing GitHub’s dependency graph and other studies on the analysis
of dependencies in software ecosystems.

2.1 Studies Leveraging GitHub’s Dependency
Graph

Alfadel et al. [1] examined the degree to which developers adopt
Dependabot for updating the vulnerable dependencies referring
to a dataset composed of 2,904 JavaScript open-source projects
subscribed to Dependabot. As a result, they observed that most of
the suggested security pull requests (65.42%) were accepted and
merged within a day. Mohayeji et al. [16] performed an empirical
study on the use of Dependabot and its effectiveness in maintaining

the dependencies secure in JavaScript projects. Their dataset was
composed of 978 JavaScript projects with 4,195 security updates.
Security advisories were retrieved by using GitHub’s dependency
graph. The results revealed that developers merge the majority
of security updates signaled by Dependabot. In addition, when a
security update is not automatically performed, developers often
manually solve the identified security vulnerability.

He et al. [12] conducted an exploratory analysis on 1,823 popular
and active projects hosted on GitHub, followed by a survey with 131
developers, to evaluate the effectiveness of Dependabot. The inves-
tigation revealed that the use of Dependabot reduces the technical
lag and that developers are highly receptive to its pull requests. On
the other hand, Dependabot revealed several limitations, including
overcoming update suspicion and notification fatigue.

The GitHub’s dependency graph feature was also exploited by
Montandon et al. [17] to unveil the technical roles of developers on
GitHub—specifically, the authors gathered projects’ dependencies
from GitHub’s dependency graph.

Nocera et al. [18] analyzed repositories hosted on GitHub to
identify those that adopted SBOM generators offered by SPDX and
CycloneDX. The authors observed a low adoption of SBOM: only 186
repositories, even if the trend was increasing. The study exploited
GitHub’s dependency graph to retrieve repositories dependent on
SBOM generators owned by SPDX and CycloneDX. The authors
reported that they had excluded 11 repositories because they were
not true cases of dependents for the studied SBOM generators. This
raises questions about the reliability of the dependency graph, yet
it does not provide a quantification of such inaccuracy, nor about
its possible root causes. This outcome justifies studies like ours.

2.2 Studies on Software Ecosystem
Dependencies

Besides studies leveraging GitHub’s dependency graph, the existing
literature reports other studies on the analysis of dependencies in
software ecosystems. Bavota et al. [2] observed that the developers
of the Apache Java ecosystem try to lower the impact that depen-
dency upgrades would have when triggered by major releases and
critical bug fixes.

Bogart et al. [4] focused on the R and npm ecosystems. The
authors showed that developers do not use systematic approaches
to cope with changes in these two ecosystems.

Zahan et al. [27] analyzed the metadata of 1,63 million JavaScript
npm packages and proposed six alerts of security weaknesses in
a software supply chain. One of their most important qualitative
results is that the developers would want to be notified about weak
link signals when using third-party packages.

3 STUDY DESIGN
The goal of our mining study is to analyze GitHub’s dependency
graph with the purpose of assessing its accuracy. The perspective
is that of practitioners who have been using GitHub’s dependency
graph or tools based on it (e.g., the one for generating SBOM files
or Dependabot), and of researchers who have been founding their
studies on GitHub’s dependency graph. The context consists of
Java and Python open-source software projects hosted on GitHub,
and using Maven and pip/Poetry as package managers, respectively.



On the Accuracy of GitHub’s Dependency Graph EASE 2024, June 18–21, 2024, Salerno, Italy

3.1 Research Questions
Based on the aforementioned study goal, we formulated and studied
the following Research Question (RQ).

RQ. How accurate is GitHub’s dependency graph?

The goal of this RQ is to assess the accuracy of both dependen-
cies and dependents provided by GitHub’s dependency graph. The
rationale is understanding whether it can be used successfully in
both research and practical development contexts, depending on
whether or not the information it provides is correct and reliable.
For example, if researchers base their studies on GitHub’s depen-
dency graph and find promising results, it does not matter how
potentially useful they are because they could be incorrect. As for
practitioners, an incorrect dependency graph, for example, may
result in an incomplete or incorrect SBOM file, thus leading to possi-
ble security issues or licensing violations. Similarly, tools leveraging
GitHub’s dependency graph may provide inaccurate information
to developers and therefore it could lead to improper decisions, e.g.,
related to failing to upgrade a vulnerable software library.

3.2 Study Context and Planning
The context of our study is represented by Java and Python open-
source software projects hosted on GitHub, the former using Maven
as a package manager, the latter employing pip or Poetry as a pack-
age manager. We focused on Java and Python because of the pop-
ularity of these two programming languages. According to 2023
PYPL index, Python is the most popular programming language,
followed by Java [20]. Regarding the choice of the package man-
agers, it was driven by the compatibility with GitHub’s dependency
graph—Maven was the only package manager compatible with Java,
while pip and Poetry were the only package managers compatible
with Python [6].

To search for software projects on GitHub, we leveraged
GHS [5]—a tool to facilitate the selection of projects from GitHub
for use in mining software repository studies. While doing so, we
kept in mind the perils of mining GitHub by Kalliamvakou et al. [15].
Therefore, with the support of GHS, we searched for projects that
met the following inclusion criteria:

(1) Developed in Java or Python. This filter lets us focus
on popular programming languages widely used both in
academic and industrial contexts.

(2) Not archived and with at least one commit in the
month preceding the date of the query (April 16𝑡ℎ ,
2023). This filter avoids selecting software projects no longer
active [15].

(3) With at least 100 stars, at least 100 commits, and at
least one fork. This mitigates the risk of selecting personal
projects [15].

(4) Not fork. This limits the risk of selecting duplicate
projects [15].

The search with GHS returned 7,172 software projects (2,296
Java projects and 4,876 Python projects) satisfying Criteria 1-4.
Later, we applied an additional inclusion criterion that GHS did not
support. Specifically, we made sure that the considered software
projects were:

(5) UsingMaven, pip, or Poetry.This criterionwas introduced
to ensure that the included projects used package managers
compatible with the chosen programming languages and
GitHub’s dependency graph.

To check whether a software project met Criterion 5, we detected
the use of the package manager (i.e., Maven, pip, and Poetry)
by looking for the corresponding manifest/lock files in that soft-
ware project. More specifically, we detected the use of Maven in
Java projects by checking—using the PyGithub library [13]—for
the presence of pom.xml files. As far as Python projects are con-
cerned, we detected the use of pip by verifying that they contained
requirements.txt, pipfile, or pipfile.lock files, while we de-
tected the use of Poetry from the presence of poetry.lock files.
Note that pip and Poetry can leverage other manifest/lock file for-
mats (e.g., setup.py and pyproject.toml) different from those
above mentioned. However, their use is not recommended with
GitHub’s dependency graph [6]. This was why we only focused on
requirements.txt, pipfile, pipfile.lock, and poetry.lock
files for Python projects.

We retrieved 1,330 Java projects using Maven and 2,948 Python
projects using pip/Poetry, which represented our populations of
interest. Due to the large size of these populations, we built two
statistically significant random samples with a confidence level
equal to 95% and amargin of error equal to 5%. As for the population
of Java projects using Maven, the required sample size resulted to
be 298. The sample size required for the Python projects using
pip/Poetry was equal to 340. When sampling software projects
from the populations of interest, we manually checked (by reading
the project’s description/README) whether or not each software
project was:

(6) Intended for software development. This was to avoid
selecting books, tutorials, or students’ assignments [15].

If a project did not meet Criterion 6 or the project’s descrip-
tion/README was not in English, we discarded it and randomly
selected a new candidate project to be included in the sample. We
decided to postpone the check of Criterion 6 at the time of sam-
pling to avoid manually verifying each project in the populations
of interest. This design choice does not negatively affect the statis-
tical significance of our samples. This is because, if a project was
not for software development, it should be removed also from the
population of interest. Note that during the forward analysis (next
section), we found three projects (one developed in Java and two
developed in Python) that were archived after our sampling. Conse-
quently, we had to discard these three projects. We did not replace
these projects in the random samples because, after recomputing
the required sizes of the random samples in light of the projects dis-
carded for not meeting Criterion 6, our random samples were still
large enough. That is, our random samples were still statistically
significant with a confidence level of 95% and an error margin of 5%.
In summary, we ended up with 297 Java and 338 Python projects.
In Table 1, we report some descriptive statistics—i.e., sum, mean,
Standard Deviation (SD), min, median, and max—on the number of
commits, contributors, stars, and forks of the studied projects.



EASE 2024, June 18–21, 2024, Salerno, Italy Bifolco et al.

Table 1: Some descriptive statistics of the studied Java and Python projects.

Language Metric Sum Mean SD Min Median Max

Java # Commits 1,070,792 3,605.36 10,448.09 100 1,262 134,597
# Contributors 11,822 39.8 40.47 1 27 306
# Stars 260,554 877.29 1,509.73 100 331 11,879
# Forks 83,520 281.21 474.5 8 127 4,121

Python # Commits 460,759 1,363.19 2,392.21 101 662 21,259
# Contributors 11,354 33.59 49.3 1 17 402
# Stars 382,797 1,132.54 2,639.82 100 339 25,777
# Forks 66,757 197.51 448.52 4 76 4,461

Table 2: Some descriptive statistics for the analyzed dependencies.

Language
% Repositories with
Dependencies

# Dependencies

Sum Mean SD Min Median Max

Java 100% (297 out of 297) 60,803 204.72 425.36 1 57 3,027
Python 100% (338 out of 338) 14,901 44.09 85.58 1 16 1,158

Table 3: Some descriptive statistics for the analyzed dependents.

Language
% Repositories
with Dependents

# Dependents (Excluding Repositories Without Dependents)

Sum Mean SD Min Median Max

Java 63% (188 out of 297) 1,761,072 9,367.40 33,147.31 1 342 279,714
Python 57% (192 out of 338) 307,369 1,600.88 8,167 1 48 97,074

Figure 1: Backward and forward analysis.

3.3 Data Analysis
Before describing the methodology behind our data analysis, we
introduce the terminology used in the remainder of the paper. In
particular, with target repository, we refer to the repository object of
the analysis, while with source repository, we refer to any repository
that depends on or is dependent on a target repository.

To answer our RQ, we needed to retrieve the dependencies and
dependents, and related information, of each software project from
its dependency graph. To this aim, given the lack of GitHub-specific
APIs for retrieving dependency graphs information, we parsing

HTML pages of dependency graphs on GitHub leveraged a web
scraping library by using BeautifulSoup [21]. After retrieving de-
pendencies, dependents, and related information of each software
project, we performed the following three quantitative analyses.

Backward analysis. This analysis focuses on the accuracy of
the dependencies reported in GitHub’s dependency graph. A graph-
ical representation of the process to perform the backward analysis
is depicted on the left-hand side of Figure 1. Given a target reposi-
tory, we first looked at its dependencies, as reported in GitHub’s
dependency graph. Then, for each dependency, we accessed the
corresponding source repository and checked whether the depen-
dents of the source repository, as reported in GitHub’s dependency
graph, included the target one. As shown in Table 2, we analyzed
60,803 dependencies for Java projects and 14,901 dependencies for
Python projects. Both Java and Python projects had at least one
dependency, with a maximum of 3,027 dependencies for Java and
1,158 dependencies for Python projects. The average number of
dependencies was equal to 204.72 and 44.09 for Java and Python
projects, respectively. Further descriptive statistics concerning the
dependencies studied are reported in Table 2.

Forward analysis. The focus of this analysis is on the accuracy
of the dependents reported in GitHub’s dependency graph. On the
right-hand side of Figure 1, we show a graphical representation of
the process for the forward analysis. Given a target repository, we
first looked at its dependents, as reported in GitHub’s dependency
graph. Then, for each dependent, we accessed the corresponding
source repository and checked whether the dependencies of the
source repository, as reported in GitHub’s dependency graph, in-
cluded the target one. As shown in Table 3, 63% and 57% of the
studied Java and Python projects, respectively, had at least one



On the Accuracy of GitHub’s Dependency Graph EASE 2024, June 18–21, 2024, Salerno, Italy

Figure 2: Manifest/lock file analysis.

Table 4: Backward analysis results of Java and Python depen-
dencies.

Detection
Java Python

Sum % Sum %

Correct 45,707 75.17 12,589 84.48
Incorrect 15,096 24.83 2,312 15.52

Total 60,803 - 14,901 -

dependent. If we exclude the projects without dependents, the av-
erage number of dependents for the remaining Java and Python
projects was equal to 9,367.40 and 1,600.88, respectively. In total, we
analyzed 1,761,072 dependents for Java projects and 307,369 depen-
dents for Python projects. Further descriptive statistics concerning
the dependents studied are reported in Table 3.

Manifest/lock file analysis. This analysis focuses on how ac-
curately GitHub’s dependency graph reports the dependency infor-
mation contained in manifest/lock files. A graphical representation
of the process to perform the manifest/lock file analysis is shown in
Figure 2. For each target repository, we retrieved its manifest/lock
files at the time they were analyzed by GitHub’s dependency graph,
as we intended to analyze the same file versions. To that end, we con-
sidered the commit on which GitHub’s dependency graph analyzed
the manifest/lock files—GitHub’s dependency graph makes avail-
able the dependency detection date—and queried GitHub through
its API to retrieve the manifest/lock files at that version. Then, to
obtain the dependencies listed in the manifest/lock files, we parsed
these files. Finally, we checked, through a script, whether the de-
pendencies retrieved from the manifest/lock files had a match in
the dependency graph for that target repository. The match took
into account (i) repository name, (ii) dependency name, (iii) path to
the manifest/lock file; and (iv) dependency version.

A syntactic comparison was performed for each of the afore-
mentioned features. If all the comparisons resulted in a positive
match, we talk about a match found; otherwise, we talk about a
match not found. It is worth noting that the dependency version
could be omitted, while the other features could not. Therefore, if
the dependency version is absent from both the dependency graph
and manifest/lock files, we still talk about a match found, as long
as there are positive matches for the other three features.

Table 5: Incorrect dependencies (out of total dependencies)
grouped by error cases.

Case
Java Python

Sum % Sum %

Occurrence not found 687 1.13 1,612 10.82
Package not found 1,945 3.2 165 1.11
Source repository not found 53 0.09 30 0.2
No link to source repository 12,411 20.41 505 3.39

4 QUANTITATIVE RESULTS
We report here the quantitative results of our study per analysis,
namely backward, forward, and manifest/lock file analyses.

4.1 Backward Analysis
As reported in Table 4, we analyzed a total of 75,704 dependencies,
most of which were related to Java projects (60,803) and less to
Python (14,901). This might be likely explained by the different
granularity of Java and Python libraries, as also shown by the mean
number of dependencies, greater for Java than for Python. As for
Java projects, 75.17% of dependencies were correctly detected, so
there is a match between the dependencies being analyzed and
the dependents of those dependencies. The dependency graph pro-
vides incorrect information in 24.83% of the cases. As for Python
projects, the percentage of correct dependencies is greater than for
Java (84.48% vs. 75.17%). The causes for the incorrect dependency
detection are:

(1) Occurrence not found. The dependency of a target reposi-
tory does not have that target repository among its depen-
dents.

(2) Package not found. GitHub’s dependency graph may split
up a target repository into packages. This error occurs when
the dependency of a package of a target repository does not
have that package listed among the packages of its depen-
dents.

(3) Source repository not found. The dependency of a target
repository is linked to a source repository that does not exist.

(4) No link to source repository. The dependency of a target
repository is not linked to any source repository.

In Table 5, we report how often these causes occur in the analyzed
projects. We report the total number of incorrectly detected depen-
dencies and the percentage of incorrectly detected dependencies
out of the total number of analyzed dependencies. For Java projects,
the most frequent category of incorrectly detected dependencies
is related to no link to source repository (20.41% of the total depen-
dencies), whereas for Python projects the most frequent category
is related to occurrences not found (10.82%).

In Table 6, we show the number of repositories for which at least
one of the errors listed in Table 5 occurred during the backward
analysis. Errors affected 90.57% of Java repositories and 73.08% of
Python repositories. Therefore, the dependency graph provides
accurate information on all the dependencies of Java and Python
repositories in 9.43% and 26.92% of cases, respectively.



EASE 2024, June 18–21, 2024, Salerno, Italy Bifolco et al.

Table 6: Number of repositories affected by errors during the
backward analysis.

Repositories
Java Python

Sum % Sum %

With error 269 90.57 247 73.08
Without errors 28 9.43 91 26.92

Total 297 - 338 -

Table 7: Forward analysis results of dependents.

Detection
Java Python

Sum % Sum %

Correct 1,701,626 96.62 218,044 70.94
Incorrect 59,446 3.38 89,325 29.06

Total 1,761,072 - 307,369 -

Table 8: Incorrect dependents (out of total dependents)
grouped by error cases.

Case
Java Python

Sum % Sum %

Occurrence not found 31,885 1.81 86,292 28.07
Source repository not found 27,410 1.56 3,028 0.99
Repository not available 151 0.01 5 0

4.2 Forward Analysis
As shown in Table 7, we analyzed a total of 2,068,441 dependents,
and most of themwere related to Java repositories (1,761,072) rather
than to Python ones (307,369). For Java projects, on the one hand,
96.62% of dependents were correctly detected, so there is a match be-
tween the dependents being analyzed and the dependencies of those
dependents. On the other hand, the dependency graph provides
inaccurate information in 3.38% of the cases. For Python projects,
the percentage of correct dependents (70.94%) is lower than for Java
projects. The causes for the incorrect dependent detection are:

(1) Occurrence not found. The dependent of a target reposi-
tory does not have that target repository among its depen-
dencies.

(2) Source repository not found. The dependent of a target
repository is linked to a source repository that does not exist.

(3) Repository not available. The dependent of a target
repository is unavailable because of policy violations—e.g.,
GitHub’s Terms of Service, DMCA (Digital MillenniumCopy-
right Act) takedown.

As done for the backward analysis, we report in Table 8 how often
the causes of incorrect dependent detection occur in the analyzed
projects. For both Java and Python projects, the prevalent cause of
incorrect dependent detection is occurrence not found (with 1.81%
and 28.07% of cases, respectively).

As shown in Table 9, the incorrect detection of dependents affects
86.70% of Java projects and 78.13% of Python projects. Therefore,
the dependency graph provides accurate information on all the

Table 9: Number of repositories affected by errors during the
forward analysis.

Repositories
Java Python

Sum % Sum %

With error 163 86.7 150 78.13
Without errors 25 13.3 42 21.88

Total 188 192

Table 10: Number of dependencies retrieved from mani-
fest/lock files and dependency graph.

Source
# Dependencies

Java Python

Manifest/lock files 68,004 14,858
Dependency graph 60,803 14,901

Table 11: Comparison between the number of dependencies
retrieved from manifest/lock files and dependency graph.

Case
Java Python

Sum % Sum %

Lower 21 7.07 19 5.62
Equal 84 28.28 284 84.02
Greater 192 64.65 35 10.36

Total 297 - 338 -

dependents of Java and Python repositories in 13.30% and 21.88%
of cases, respectively.

4.3 Manifest/lock File Analysis
During this analysis, we failed to retrieve six manifest/lock files,
four concerning Java projects and two concerning Python, from
the corresponding commits (see Section 3.3). We retrieved and then
analyzed 7,166 manifest/lock files. Out of these, 6,223 referred to
Java projects and 943 to Python projects.

As shown in Table 10, the dependency graph identified 60,803
Java and 14,901 Python dependencies, respectively. On the other
hand, the number of dependencies retrieved from manifest/lock
files was higher for Java projects (7,201 additional dependencies
than the dependency graph) and lower for Python projects (43 false
positive dependencies).

In Table 11, we show the results of a comparison between the
number of dependencies retrieved from manifest/lock files and
those retrieved from GitHub’s dependency graph, such a compar-
ison takes into account each repository. In this way, we can see
if there are differences between the number of dependencies de-
tected from manifest/lock files and those that GitHub shows in the
dependency graphs. For Java projects, the number of dependencies
retrieved from manifest/lock files was greater than the number of
dependencies retrieved from the dependency graph for 64.65% of
repositories, while lower for 7.07% of them. The retrieved dependen-
cies matched betweenmanifest/lock files and the dependency graph
for only 28.28% of the repositories. For Python projects, the number
of retrieved dependencies was the same for 84.02% of repositories.



On the Accuracy of GitHub’s Dependency Graph EASE 2024, June 18–21, 2024, Salerno, Italy

Table 12: Match between the dependencies retrieved from the
manifest/lock files and those from the dependency graph.

Match
Java Python

Sum % Sum %

Found 52,490 77.19 14,220 95.71
Not Found 15,514 22.81 638 4.29

Total 68,004 - 14,858 -

For 10.36% and 5.62% of repositories, the manifest/lock files listed
more and fewer dependencies, respectively, than those identified
from GitHub’s dependency graph.

Table 12 indicates to what extent the dependencies retrieved
from manifest/lock files match those retrieved from the depen-
dency graph. This analysis allows us to understand how consistent
the information from the two sources is with each other. For Java
projects, 77.19% of dependencies retrieved for manifest/lock files
match those retrieved from GitHub’s dependency graph; thus, there
is a match between the following features: repository name, depen-
dency name, file path, and dependency version (see Section 3.3).
On the other hand, there is a mismatch in 22.81% of the cases.
For Python projects, the percentage of correct matches (95.71%) is
higher than that of Java projects (consequently, the percentage of
mismatches, 4.29%, is lower).

Answer to RQ: The majority of the analyzed projects have inac-
curacies on their GitHub’s dependency graph, either in dependents
or dependencies. Moreover, the dependency information from man-
ifest/lock files and GitHub’s dependency graph does not always
match: 77% of Java dependencies have a match, while Python de-
pendencies have a match in 96% of cases. GitHub’s dependency
graph seems to be more accurate for Python projects, likely due to
the different ability to analyze dependency versions from Python
requirements as opposed to pom.xml files.

5 DISCUSSION
In this section, we provide (qualitative) insights into the causes of
the observed errors in GitHub’s dependency graph by discussing
some examples. The insights are arranged by grouping the cases
we detected from the raw data obtained for each of the three kinds
of conducted analyses: backward, forward, and manifest/lock file.

5.1 Backward Analysis Cases
Analyzing the raw data obtained from the backward analysis, we
found different examples of inaccurate information, some of which
are described in the following:

• Occurrence not found: as shown in Figure 3, the repository
apache/unomi presents a com.graphql-java:graphql-java de-
pendency. The dependency link correctly points to the repos-
itory graphql-java/graphql-java: however, the dependents
section of the dependency graph reports “We haven’t found
any dependents for this repository yet", despite com.graphql-
java:graphql-java has at least one dependent. Such a kind of
imprecision could be a concern if developers rely on mecha-
nisms such as Dependabot to stay up-to-date and maintain

the repository against security vulnerabilities in its depen-
dencies. That is, this type of error can harm the accuracy of
Dependabot’s alerts.

• Package not found: the repository awslabs/aws-saas-boost
has a software.amazon.awssdk:dynamodb dependency cor-
rectly linked to the source repository of aws/aws-sdk-java-v2;
however, the dependents section does not list the correspond-
ing package. We conjecture that this problem may be caused
by the visualization limits (i.e., the dependency graph only
displays 100 manifests/lock files) of GitHub’s dependency
graph [11].

• Source repository not found: the repository google/caliper
presents a com.google.code.java-allocation-instrumenter:java-
allocation-instrumenter dependency linked to its source
repository /QPC-WORLDWIDE/allocation-instrumenter, but
the latter does not exist. In this case, the issue may be due
to incorrect linking to the source repository, or, because the
repository has been deleted or made private.

• No link to source repository: as shown in Fig-
ure 4, the repository apache/phoenix presents the
org.jruby.jcodings:jcodings dependency in two of its package
manager files. As for the first row, the dependency is
correctly linked to its source repository jruby/jcodings (see
the left-hand side of Figure 4), while in the second row, the
same dependency is not linked to its source repository (see
the right-hand side). When analyzing the pom.xml files, the
only difference between the two files is the presence of the
dependency version in the former, while it is not present in
the latter.

5.2 Forward Analysis Cases
We bumped into the following cases of inaccuracy:

• Occurrence not found: As shown in Figure 5, the repos-
itory aws/aws-xray-sdk-python presents a vitoKdata/pri-
vate_snowflake_streamlit dependent correctly linked to his
source repository. Still, in the dependencies section of the
dependency graph of the latter, we do not find aws-xray-sdk.
The possible cause of such a problem could be how both the
dependency and dependent information is stored. In other
words, when a link is deleted from one of the sides, such
information is not updated on the other.

• Source repository not found: The package
org.glassfish.jersey.bundles:jaxrs-ri of the repository
eclipse-ee4j/jersey presents a solskinIsak/3semSYS_Backend
dependent linked to its source repository, however the latter
does not exist. In this case, the problem may be caused by
improper linking to the source repository, or due to the
repository being deleted or made private.

• Repository not available: The repository
apache/httpcomponents-client presents a tim-
ing1337/Mineplex dependent correctly linked to its
source repository; however, the latter is unavailable due
to DMCA takedown. That is the act of requesting to take
down copyrighted content from a website. If the repository
timing1337/Mineplex contains any authorized copyrighted
material, the copyright owner or its representative can



EASE 2024, June 18–21, 2024, Salerno, Italy Bifolco et al.

Figure 3: Example of an occurrence not found error in backward analysis.

Figure 4: Example of a no link to source repository error in backward analysis.

Figure 5: Example of an occurrence not found error in forward analysis.

issue a DMCA takedown request to GitHub [8]. Following
such a request, GitHub would disable public access to
the repository.

It is worth noting that between the time we automatically mined
and analyzed the data and the time we qualitatively looked at data
(five months after), error cases related to the source repository not
found and repository not available categories have been resolved by
GitHub. This means that some problems on GitHub’s dependency



On the Accuracy of GitHub’s Dependency Graph EASE 2024, June 18–21, 2024, Salerno, Italy

graph are being resolved and that the accuracy of such a graph may
further improve in the future.

5.3 Manifest/lock File Analysis Cases
As shown in Section 4.3, there are several cases in which we do
not find a perfect match between the dependencies retrieved mani-
fest/lock files and those retrieved from GitHub’s dependency graph.
These cases mostly concern Java projects. In this regard, we noticed
that when the groupID element of a dependency is not specified
in the pom.xml file of a Java project, the dependency graph does
not include that dependency. However, avoiding specifying the
groupID element is not a mistake, because its value, if omitted,
implies that it is defined in the hierarchically-superior pom.xml file.

A similar problem occurs when, in a pom.xml file, the version
element of a dependency is specified with a variable, rather than
a constant value. Again, in this case, GitHub’s dependency graph
may fail to report the right version of that dependency.

Another problem concerns the lack of a standard way to
define version tags, as far as both Java and Python projects
are concerned. For example, according to GitHub’s dependency
graph, the project dromara/MaxKey depends on the version 2.1.5
of org.springframework.security.oauth.boot:spring-security-oauth2-
autoconfigure. However, in the corresponding pom.xml file, the right
version is 2.1.5.RELEASE. Other examples of version tags, for which
we observed a mismatch with respect to the dependency version
the dependency graph detected, are: 1.9.0-alpha2, 1.7.5-SNAPSHOT,
3.15.6.Final, or v2-rev65-1.17.0-rc. It is worth mentioning that these
examples are not exhaustive.

Finally, as reported in Section 4.3, we failed to retrieve six man-
ifest/lock files from the corresponding commits. An example is
represented by the repository bcollazo/catanatron. In particular, al-
though this repository has the flask dependency correctly linked
to its source repository when accessing the file in which flask de-
pendency was detected, we obtained a “404 File Not Found” error.
Since the file from which the dependency was detected is no longer
available, the dependency graph should have been updated, how-
ever, this was not the case. This implies that the dependency graph
does not constantly reflect the up-to-date status of a repository’s
dependencies. The timeliness of updating the dependency graph is
critical for developers who rely on it to make informed decisions
about dependency management and security.

6 IMPLICATIONS
For what concerns researchers, our study points out the impreci-
sion of GitHub’s dependency graph. For this reason, research work
leveraging it for different purposes, for example studying software
ecosystems or SBOMs [18] should, at the minimum, perform a man-
ual validation of at least a significant sample of the extracted graph
(if not the entire one) to determine the extent to which the work’s
findings are subject to imprecision. This, for example, was done
in the work by Nocera et al. [18]. In addition to that, researchers
willing to achieve a better level of accuracy should leverage further
sources for dependencies—e.g., by implementing more accurate
analyzers for manifest/lock files.

For what concerns practitioners, as discussed before, the inac-
curacy of GitHub’s dependency graph can impact the recommender

systems leveraging it. First of all, this impacts tools such as Depend-
abot. As a result, developers may not be able to update dependencies
when needed, leading to potential vulnerability exposure with obvi-
ous economic fallout for the company. Similar considerations apply
to developers that need to generate SBOM files and only leverage
tools based on GitHub’s dependency graph such as the SBOM gen-
erator. The inaccuracy of GitHub’s dependency graph could also
lead to non-identification of software license violations and this
could result in legal problems with serious business consequences.

Last, but not least, our results can be of interest to the developers
of the GitHub infrastructure. Related to that, recently GitHub has
distributed a survey to its users, requesting feedback on their use of
GitHub’s dependency graphs to help improve it [10]. In our work,
we describe the type of errors that can occur in the dependencies
and dependents fromGitHub’s dependency graph. These error cases
might, indeed, contribute to improving the accuracy of GitHub’s
dependency graph.

7 THREATS TO VALIDITY
In this section, we discuss the threats that might affect our results.
We do not discuss threats to internal validity since we do not inves-
tigate causality, if not by discussing some qualitative examples.

Construct Validity. Threats to construct validity concern the
relation between theory and observation [25]. In our study, such
a kind of threat regards the quantitative analyses—i.e., backward,
forward, manifest/lock file analyses—we performed to assess the ac-
curacy of GitHub’s dependency graph, along with the used metrics.
We leveraged widely used libraries to analyze the artifacts neces-
sary for the analysis, carefully tested our scripts, and complemented
our quantitative analysis with a qualitative one.

ConclusionValidity. Threats to conclusion validity concern the
statistical conclusions, including sample composition and size [25].
We built two statistically significant random samples, one for Java
projects and another one for Python projects, with a confidence
level equal to 95% and a margin of error equal to 5%, rather than
analyzing any project in the populations of interest. Although this
is a very common procedure to avoid analyzing any subject in
a population of interest (e.g., [19, 28]), it might pose a threat to
conclusion validity.

External Validity. Threats to external validity concern the gen-
eralizability of results [25]. Our results might not be generalized to
software projects developed in programming languages different
from Java and Python. In this respect, our results suggest that the
accuracy of GitHub’s dependency graph differs when considering
Java and Python projects. Therefore, our results suggest future
work focusing on other programming languages. Finally, our re-
sults might not reflect the current accuracy of GitHub’s dependency
graph, since we mined GitHub in April 2023, and some inaccuracies
might have been resolved in the meantime.

8 CONCLUSION
We presented the results of a mining study to assess the accuracy of
GitHub’s dependency graph in Java and Python open-source soft-
ware projects. To this end, we performed a: (i) backward analysis,
focusing on the accuracy of a given repository’s dependencies, as
reported in the dependency graph; (ii) forward analysis, focusing



EASE 2024, June 18–21, 2024, Salerno, Italy Bifolco et al.

on the accuracy of the dependents, as reported in the dependency
graph of a given repository; and (iii) manifest/lock file analysis fo-
cusing on the correspondence between the information reported in
the dependency graph and what was reported in the correspond-
ing manifest/lock files. The three different analyses reported at
least one inaccuracy in the majority of the analyzed projects. We
also qualitatively discussed the nature and possible causes of these
inaccuracies. The results of our study have several practical impli-
cations. For example, imprecision in GitHub’s dependency graph
could affect recommenders (e.g., Dependabot) and other tools based
on it such as GitHub’s SBOM generation tool.

As possible future work for our research, we will conduct a study
to understand to what extent imprecision in GitHub’s dependency
graph affects past studies based on it. We also plan to replicate our
study to understand if GitHub improved over time the way the
dependency graphs are built and updated.

DATA AVAILABILITY
The study replication package, containing raw data, scripts, and
details on the studied software projects, is available online [3].

ACKNOWLEDGMENTS
This project has been financially supported by the European Union
NEXTGenerationEU project and by the Italian Ministry of the Uni-
versity and Research MUR, a Research Projects of Significant Na-
tional Interest (PRIN) 2022 PNRR, project n. D53D23017310001
entitled ‘Mining Software Repositories for enhanced Software Bills
of Materials (MSR4SBOM)’. Daniele Bifolco is partially funded by
the PNRR DM 118/2023 Italian Grant for Ph.D. scholarships.

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati.

2021. On the Use of Dependabot Security Pull Requests. In Proceedings of Inter-
national Conference on Mining Software Repositories. IEEE, 254–265.

[2] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2015. How the apache community upgrades dependencies:
an evolutionary study. Empir. Softw. Eng. 20 (2015), 1275–1317.

[3] Daniele Bifolco, Sabato Nocera, Simone Romano, Massimiliano Di Penta,
Rita Francese, and Giuseppe Scanniello. 2023. On the Accuracy of
GitHub’s Dependency Graph: A Replication Package. https://figshare.com/s/
81e96d4864f4ebc5e25c. https://doi.org/10.6084/m9.figshare.24441289

[4] Christopher Bogart, Christian Kästner, and James Herbsleb. 2015. When it breaks,
it breaks: How ecosystem developers reason about the stability of dependencies.
In Proceedings of IEEE/ACM International Conference on Automated Software
Engineering Workshop. IEEE, 86–89.

[5] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In Proceedings of International Conference on Mining
Software Repositories. IEEE, 560–564.

[6] GitHub. 2023. About the Dependency Graph. https://docs.github.com/en/code-
security/supply-chain-security/understanding-your-software-supply-

chain/about-the-dependency-graph.
[7] GitHub. 2023. Dependabot. https://docs.github.com/en/code-security/

dependabot.
[8] GitHub. 2023. DMCA Takedown Policy. https://docs.github.com/en/site-policy/

content-removal-policies/dmca-takedown-policy.
[9] GitHub. 2023. Exporting a Software Bill of Materials for Your

Repository. https://docs.github.com/en/code-security/supply-chain-
security/understanding-your-software-supply-chain/exporting-a-software-
bill-of-materials-for-your-repository.

[10] GitHub. 2023. Help improve GitHub dependency graph with your feedback! https:
//github.com/orgs/community/discussions/43364

[11] GitHub. 2023. Troubleshooting the dependency graph. https://docs.github.com/
en/enterprise-server@3.9/code-security/supply-chain-security/understanding-
your-software-supply-chain/troubleshooting-the-dependency-graph#are-
there-limits-which-affect-the-dependency-graph-data.

[12] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating Depen-
dency Updates in Practice: An Exploratory Study on GitHub Dependabot. IEEE
Trans. Softw. Eng. 49, 8 (2023), 4004–4022.

[13] Vincent Jacques. 2023. PyGithub. https://pygithub.readthedocs.io/en/stable/.
[14] Joe Biden. 2021. Executive Order on Improving the Nation’s Cybersecu-

rity. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/
12/executive-order-on-improving-the-nations-cybersecurity/

[15] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of Mining Software Repositories. ACM, 92–101.

[16] Hamid Mohayeji, Andrei Agaronian, Eleni Constantinou, Nicola Zannone, and
Alexander Serebrenik. 2023. Investigating the Resolution of Vulnerable Depen-
dencies with Dependabot Security Updates. In Proceedings of 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR). IEEE, 234–246.

[17] João EduardoMontandon,Marco Tulio Valente, and Luciana L. Silva. 2021. Mining
the Technical Roles of GitHub Users. Inf. Softw. Technol. 131 (2021), 106485.

[18] Sabato Nocera, Simone Romano, Massimiliano Di Penta, Rita Francese, and
Giuseppe Scanniello. 2023. Software Bill of Materials Adoption: A Mining Study
from GitHub. In Proceedings of International Conference on Software Maintenance
and Evolution. IEEE.

[19] Jevgenija Pantiuchina, Bin Lin, Fiorella Zampetti, Massimiliano Di Penta, Michele
Lanza, and Gabriele Bavota. 2021. Why Do Developers Reject Refactorings in
Open-Source Projects? ACM Trans. Softw. Eng. Methodol. 31, 2 (2021), 1–23.

[20] PYPL. 2023. 2023 PYPL Index. https://pypl.github.io/PYPL.html.
[21] Leonard Richardson. 2023. BeautifulSoup. https://www.crummy.com/software/

BeautifulSoup/.
[22] Stack Overflow. 2022. 2022 Developer Survey. https://survey.stackOverflow.co/

2022.
[23] Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta,

DanielMGerman, andDenys Poshyvanyk. 2024. BOMsAway! Inside theMinds of
Stakeholders: A Comprehensive Study of Bills of Materials for Software Systems.
In Procedings of International Conference on Software Engineering. ACM.

[24] Eric Tooley and Erin Havens. 2023. A Smarter Quieter Dependabot. https:
//github.blog/2023-01-12-a-smarter-quieter-dependabot/.

[25] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.

[26] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023.
An Empirical Study on Software Bill of Materials: Where We Stand and the Road
Ahead. In 45th IEEE/ACM International Conference on Software Engineering, ICSE
2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2630–2642.

[27] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What Are Weak Links in the Npm
Supply Chain?. In Proceedings of International Conference on Software Engineering:
Software Engineering in Practice. ACM, 331–340.

[28] Fiorella Zampetti, Ritu Kapur, Massimiliano Di Penta, and Sebastiano Panichella.
2022. An empirical characterization of software bugs in open-source Cy-
ber–Physical Systems. J. Syst. Softw. 192 (2022), 111425.

https://figshare.com/s/81e96d4864f4ebc5e25c
https://figshare.com/s/81e96d4864f4ebc5e25c
https://doi.org/10.6084/m9.figshare.24441289
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/dependabot
https://docs.github.com/en/code-security/dependabot
https://docs.github.com/en/site-policy/content-removal-policies/dmca-takedown-policy
https://docs.github.com/en/site-policy/content-removal-policies/dmca-takedown-policy
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exporting-a-software-bill-of-materials-for-your-repository
https://github.com/orgs/community/discussions/43364
https://github.com/orgs/community/discussions/43364
https://docs.github.com/en/enterprise-server@3.9/code-security/supply-chain-security/understanding-your-software-supply-chain/troubleshooting-the-dependency-graph#are-there-limits-which-affect-the-dependency-graph-data
https://docs.github.com/en/enterprise-server@3.9/code-security/supply-chain-security/understanding-your-software-supply-chain/troubleshooting-the-dependency-graph#are-there-limits-which-affect-the-dependency-graph-data
https://docs.github.com/en/enterprise-server@3.9/code-security/supply-chain-security/understanding-your-software-supply-chain/troubleshooting-the-dependency-graph#are-there-limits-which-affect-the-dependency-graph-data
https://docs.github.com/en/enterprise-server@3.9/code-security/supply-chain-security/understanding-your-software-supply-chain/troubleshooting-the-dependency-graph#are-there-limits-which-affect-the-dependency-graph-data
https://pygithub.readthedocs.io/en/stable/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://pypl.github.io/PYPL.html
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://survey.stackOverflow.co/2022
https://survey.stackOverflow.co/2022
https://github.blog/2023-01-12-a-smarter-quieter-dependabot/
https://github.blog/2023-01-12-a-smarter-quieter-dependabot/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Studies Leveraging GitHub's Dependency Graph
	2.2 Studies on Software Ecosystem Dependencies

	3 Study Design
	3.1 Research Questions
	3.2 Study Context and Planning
	3.3 Data Analysis

	4 Quantitative Results
	4.1 Backward Analysis
	4.2 Forward Analysis
	4.3 Manifest/lock File Analysis

	5 Discussion
	5.1 Backward Analysis Cases
	5.2 Forward Analysis Cases
	5.3 Manifest/lock File Analysis Cases

	6 Implications
	7 Threats To Validity
	8 Conclusion
	Acknowledgments
	References

