
1

Listening to the Crowd
for the Release Planning of Mobile Apps

Simone Scalabrino, Student Member, IEEE, Gabriele Bavota, Member, IEEE
Barbara Russo, Member, IEEE, Rocco Oliveto, Member, IEEE, Massimiliano Di Penta Member, IEEE

Abstract—The market for mobile apps is getting bigger and bigger, and it is expected to be worth over 100 Billion dollars in 2020. To
have a chance to succeed in such a competitive environment, developers need to build and maintain high-quality apps, continuously
astonishing their users with the coolest new features. Mobile app marketplaces allow users to release reviews. Despite reviews are aimed
at recommending apps among users, they also contain precious information for developers, reporting bugs and suggesting new features.
To exploit such a source of information, developers are supposed to manually read user reviews, something not doable when hundreds of
them are collected per day. To help developers dealing with such a task, we developed CLAP (Crowd Listener for releAse Planning), a
web application able to (i) categorize user reviews based on the information they carry out, (ii) cluster together related reviews, and (iii)
prioritize the clusters of reviews to be implemented when planning the subsequent app release. We evaluated all the steps behind CLAP,
showing its high accuracy in categorizing and clustering reviews and the meaningfulness of the recommended prioritizations. Also, given
the availability of CLAP as a working tool, we assessed its applicability in industrial environments.

Index Terms—Release Planning, Mobile Apps, Mining Software Repositories

F

1 INTRODUCTION

The wide diffusion of mobile devices is making the apps
market a tremendous success. Developers can easily join
such a market by publishing their apps in an online store,
making them available for download to interested users.
The five leading app stores (i.e., Google Play1, Apple App
Store2, Windows Store3, Amazon Appstore4, and BlackBerry
World5) count, overall, over five million apps, with the most
popular (i.e., Google Play) accounting alone for over two
million apps. These numbers basically highlight one bold
fact: Succeeding in this market is not as simple as joining
it, since the competition is strong and users interested in a
specific “type” of app (e.g., a GPS navigator) can generally
choose among hundreds of similar apps (e.g., a simple search
for “GPS navigator” on Google Play results in over 200 apps).

To guide the users in the choice of the best apps to
download, the app stores feature user reviews, having
the purpose of (i) allowing users to indicate on a five-
star scale how much they liked the app (review’s rating),
and (ii) explaining, in a free text form, why the users
like or do not like the app, report bugs or request new
features. User reviews thus also represent an important
source of information that developers can exploit to guide the
successful evolution of their apps (e.g., by rapidly fixing bugs

• S. Scalabrino and R. Oliveto are with the University of Molise, Italy.
E-mail: {simone.scalabrino, rocco.oliveto}@unimol.it

• G. Bavota is with the Università della Svizzera italiana (USI), Switzerland.
E-mail: gabriele.bavota@usi.ch

• B. Russo is with the Free University of Bozen-Bolzano, Italy.
E-mail: barbara.russo@unibz.it

• M. Di Penta is with the University of Sannio, Italy.
E-mail: dipenta@unisannio.it

1. https://play.google.com/store
2. https://www.appstore.com/
3. https://www.microsoft.com/store/apps
4. https://www.amazon.com/getappstore
5. https://appworld.blackberry.com

reported by users and/or by implementing recommended
features). Past studies have shown that various indicators
of the app quality, such as the used APIs change- and fault-
proneness [9], [39], the presence of ads [35], or, in general,
characteristics of the apps or of the device on which it is
deployed [38] significantly correlate with the app rating.
Also, there is empirical evidence that satisfactorily addressing
requests made through user reviews is likely to increase the
app rating [32]. However, manually read each user review
and verify if it contains useful information is not doable
for popular apps receiving hundreds of reviews per day.
For such reasons, researchers have developed approaches to
analyze the content of user reviews with the aim of crowd-
source requirements [15]–[17], [23], [26], [28], [33]. Among
others, AR-MINER [15] is able to discern informative reviews,
group and rank them in order of importance.

While approaches to identify and classify relevant and
informative reviews have been proposed, it would be desir-
able to have a fully-automated (or semi-automated) solution
that, given the user reviews for an app, recommends which
ones—being them requests for new features or for bug fixes—
should be addressed in the next release.

In this paper we propose CLAP, an approach to (i)
automatically categorize user reviews into functional bug
report, suggestion for new feature, report of performance problems,
report of security issues, report of excessive energy consumption,
request for usability improvements and other (including non-
informative reviews); (ii) cluster together related reviews in
a single request, and (iii) recommend which review cluster
developers should satisfy in the next release. Unlike AR-
MINER [15], CLAP classifies reviews into specific categories
(e.g., report of security issues), providing additional insights
to the developer about the nature of the review. Also, while
AR-MINER simply provides a ranking of the user reviews
based on their importance as assessed by a pre-defined

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

formula, CLAP learns from past history of the same app
or of other apps to determine the factors that contribute to
determining whether a review should be addressed or not.
As compared to other existing techniques (e.g., [16], [17],
[28], [33]), CLAP offers a complete solution, going from
the reviews categorization up to their prioritization in sight
of the next app release. CLAP combines natural language
processing techniques and machine learning for review clas-
sification, uses clustering techniques for grouping reviews,
and, finally, again a machine learner that recommends the
implementation of specific clusters of reviews by relying on
features such as the number of reviews in a cluster or the
number of different hardware devices affected by a bug.

We thoroughly evaluated each step of CLAP, as well as
of the whole, publicly available tool. First, we performed
a study to assess the accuracy of CLAP in classifying
reviews. The second validation stage aimed at comparing
the review clusters generated by CLAP with respect to
manually-produced clusters. The third validation assessed
the ability of CLAP to recommend changes to implement
in sight of the next app releases. Last, but not least, in the
fourth validation stage we provided our tool to managers of
three Italian software companies to get quantitative and
qualitative feedback about the applicability of CLAP in
their everyday decision making process. CLAP is publicly
available as a Web application6. Everyone can use it by
registering and importing from the Google Play store the
reviews’ of his/her apps. Also, the user just interested in
having a look to the CLAP features can login with a demo
account (login: demonstration, password: playwithclap).

This paper extends our ICSE 2016 paper [40] in the
following aspects:

• We extended CLAP to provide a more fine-grained catego-
rization of users’ reviews. Indeed, the original version of
CLAP was only able to classify users’ reviews falling in
three possible categories: functional bug report, suggestion
for new feature, and other (i.e., non-informative reviews).
However, our industrial contacts, involved in the study
reported in this paper, stressed the importance of mining
reviews reporting bugs related to non-functional require-
ments. Thus, we extended our approach to also consider
additional four categories of reviews: report of security
issues, report of performance problems, report of excessive
energy consumption, and request for usability improvements.

• We consider new predictor variables when categorizing users’
reviews. In particular, we also exploit the length of
the reviews and the category of the app (e.g., game,
productivity) for which the review has been posted.

• We re-run and expanded our experiment on reviews’ catego-
rization. Having new categories of reviews (see previous
point) made necessary to re-run the evaluation of the
first step behind CLAP (i.e., the reviews’ categorization).
To this aim, we manually labeled the category of 3,000
user reviews (as compared to the 1,000 considered in
our ICSE paper), and contrast the automatic CLAP
categorization against our manually defined “oracle”.
We also compared the classification accuracy achieved
by CLAP and AR-MINER.

6. https://dibt.unimol.it/CLAP/

• We compared the reviews’ clustering performed by CLAP
with those performed by AR-MINER.

• We re-run and expanded our experiment on reviews’ clusters
prioritization. In our ICSE paper we considered in this
study reviews from five apps, while in this paper we
run such a study on 725 reviews from 14 apps.

• We describe in much more details our tool and deployed
it. CLAP is publicly available as a Web application7.
Everyone can use it by registering and importing from
the Google Play store the reviews’ of his/her apps.
Also, the user just interested in having a look to the
CLAP features can login with a demo account (login:
demonstration, password: playwithclap).

Paper structure. Section 2 details the various phases of
CLAP, and also describes the tool prototype. Section 3 details
the empirical evaluation definition, design, and planning,
whereas its results are reported in Section 4. Section 5
discusses the threats to the study validity. Related work
is discussed in Section 7. Finally, Section 8 concludes the
paper and outlines directions for future work.

2 CLAP IN A NUTSHELL

CLAP provides support to developers for the release
planning of mobile apps by automatically analyzing its
user reviews through a three-step process detailed in the
following subsections. As previously said, CLAP has been
implemented as a publicly available web application. Its
current implementation supports the automatic import of the
user reviews from Google Play, although it can be generalized
to work with any other app store. Figure 1 shows an overview
of the workflow of CLAP.

2.1 Categorizing User Reviews

The first step aims at classifying user reviews into seven
categories: functional bug report, suggestion for new feature,
report of performance problems, report of security issues, report of
excessive energy consumption, request for usability improvements
and other.

The rationale is that, as it will be clear in Section 2.3,
developers can use different motivations to decide upon
fixing bugs, implementing requests for new features or
improving the app non-functional requirements. Other tools
such as AR-MINER [15] classify reviews into informative and
non-informative. In our case, we make a more specific classi-
fication of informative reviews, whereas the non-informative
ones fall into the other category.

CLAP uses the Weka [7] implementation of the Random
Forest machine learning algorithm [11] to classify user
reviews. The Random Forest algorithm builds a collection
of decision trees with the aim of solving classification-type
problems, where the goal is to predict values of a categorical
variable from one or more continuous and/or categorical
predictor variables. In our work, the categorical dependent
variable is represented by the type of information reported in
the review, and we use the rating of the user reviews and the
terms/sentences they contain as predictor variables. We have
chosen Random Forest after experimenting with different

7. https://dibt.unimol.it/CLAP/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Fig. 1: CLAP workflow

machine learner algorithms (details of the comparison in
Section 5).

A possible problem is represented by the fact that some
of the categories are rarer than others. For example, reviews
reporting functional bugs or suggesting new features are
likely to be more than those reporting security issues. In
such a context, a machine learning algorithm will tend to
assign reviews to more frequent classes, because an error
on underrepresented categories is more acceptable than an
error on other categories as for overall accuracy. In order to
prevent this kind of problem, we use a SMOTE filter [13] to
balance the training set. SMOTE creates artificial instances
of a specific category, based on the real instances from the
training set. We first select the most represented category,
then we run SMOTE on all the other categories, so that the
number of instances of each category is equal.

The user review classifier exploits the reviews’ text to
extract features. To this aim, we adopt a customized text
preprocessing to characterize each review on the basis of its
textual content. The steps of such a process are detailed in
the following.

Handling Negations. Mining text in code reviews
present challenges related to negation of terms. For instance,
reviews containing the words “fix” and “problem” are likely
to report a bug, while reviews containing words like “lag”
and “slow” are more likely to report performance issues.
However, there is a strong exception to this general trend
that is due to the negation of terms. Consider the following
review: “I love it, it runs smooth no lags or glitches”. It is clear
that in this case, the context in which the words “lag” and
“glitches” are used does not indicate any performance issue.
However, the presence of these words in the review could
lead to misclassifications from the prediction model. We
tackle this problem introducing an additional pre-processing
step, which aims at removing negated terms from the text.
The first step consist in the tokenization of the original text,

which is divided into simpler unities. Such unities can be
words, numbers or punctuation marks. Then, the sequence
of tokens is analyzed and negated terms are removed. When
a negation is encountered, one or more subsequent tokens
are skipped, based on the kind of negation. Specifically,
“no” or “not” imply the skipping of only one following
token (e.g., no bugs), while “don’t” or “do not” will result
in the skipping of two tokens (e.g., does not have bugs),
because they are auxiliaries, and it is expected that a verb
follows them. Moreover, it is possible that a negation is
associated to multiple terms: for example, in the case of “no
lags or bugs”, if we just skip the first term, we would miss
the negation of “bugs”. To prevent this situation, when a
conjunction (i.e., “and”, “or” or a comma) is encountered
after a negated term, we treat it like a negation. For example,
the sentence “I experienced no lag, freezes or issues” is
treated as “I experience no lag no freezes no issues” and,
thus, it is transformed in “I experience”. The final result
is the elimination of the negated terms “freezes”, “issues”
and “lag”. Figure 2 shows a state diagram of the negation
handling process. The initial state is ACCEPT. For each token
in the sequence, there might be a change in the status. When
the status is ACCEPT or the status changes in ACCEPT, the
token taken into account is accepted, while it is discarded in
all other cases. It is worth noting that some tokens may be
eliminated even if there is no negation. For example, when a
“do” is encountered, it is discarded, since the state is switched
to AUX. These cases are deliberately not handled, because
such tokens would be eliminated anyway in the next step
(i.e., stop-words removal).

In the previous version of CLAP [40] the handling of
negations was performed by exploiting the Stanford parser
[37]. However, we noticed that in some cases it was not
able to accurately remove negated terms. This happened
especially in the presence of typos (e.g., “dont” instead of
“don’t” used in the review), quite common in user reviews.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Fig. 2: State diagram of negation terms removal. Tokens on
green arrows are accepted, while tokens on red arrows are
discarded. The wildcard * means “any other token”.

TABLE 1: Evaluation of the negation handling techniques.

false positives false negatives true positives

State-diagram Approach 0 69 209
Stanford parser 0 194 84

Also, when importing a large number of reviews from
the Google Play store, the computational cost of this text
preprocessing step was quite high. For this reasons, we
designed the simple state-diagram-based negation handling
approach described above. We manually evaluated this
approach on a set of randomly selected 400 reviews from
the dataset by Chen et al. [14]. In particular, we selected 200
reviews containing at least one negation and 200 without any
negation. We used regular expressions to select the reviews
containing/not containing negated terms. We used both our
new state-diagram approach as well as the approach based
on the Stanford parser, used in the previous version of CLAP
[40] to remove negated terms from the set of 400 reviews.
Then, one of the authors manually analyzed the 400 original
reviews as well as the output produced by the two negations
handling approaches. In particular, he counted (i) the number
of not negated “useful” words (i.e., words not present in the
stop-words list) erroneously removed from both reviews
containing/not containing negations (false positives), (ii) the
number of negated terms correctly removed (true positives),
and (iii) the number of missed (not removed) negated terms
(false negatives).

Table 1 reports the results of such evaluation. The
implemented state-diagram approach removes about 45%
more negations than the one based on the Stanford parser.
Also, while the simple state-diagram approach takes ∼10
seconds to process the 400 reviews, the one based on the
Stanford parser requires ∼80 seconds.

Stop-words. Many words, such as conjunctions, pro-
nouns, adverbs and so on, are present in natural language
texts, but they do not add informative content. In this phase
we remove terms belonging to the English stop-words list8.

Stemming In natural language, the same root term could
appear in many forms. For example, the term “bug” could
also appear in plural form (“bugs”) or as an adjective

8. https://code.google.com/p/stop-words/

(“buggy”). It could be helpful for the machine learning
classifier to reduce all such different forms to a single one,
in order to treat them as if they were exactly the same word.
To mitigate this problem, we apply the Porter stemmer [34]
to reduce all words to their root. Continuing the previous
example, the terms “bugs”, “buggy” and “bug” will be all
reduced to “bug”.

Unifying Synonyms. One possibility to unify synonyms
would be to use existing thesaurus such as WordNet [30].
However, in the context of user reviews, we found that
general-purpose thesaurus are not adequate. Thus, we rely
on a customized dictionary of synonyms that we defined by
manually looking at 1,000 reviews (not used in the empirical
evaluation) we collected for a previous work [9]. Examples of
synsets we obtained are {crash, bug, error, fail} (terms related to
a bug/crash), {add, miss, lack, wish} (terms related to the need
for adding a new feature) or {battery, energy} (terms related
to a report of excessive energy consumption). Noticeably,
words such as energy and battery would not be considered
synonyms by a standard thesaurus, while they are very likely
to indicate the same concept in mobile apps reviews.

N-grams extraction. Besides analyzing the single words
contained in each review, we extract the set of n-grams
composing it, considering n ∈ [2 . . . 4]. For instance, the
extraction of n-grams from a review stating “The app resets
itself; Needs to be fixed” will result in the extraction of n-
grams like resets itself, needs to be fixed, etc. Note that the three
preprocessing steps described above are not performed on
the n-grams (i.e., they only affect the single words extracted
from the review). This is done to avoid loosing important
information embedded in n-grams. For example, managing
negations is not needed when working with n-grams, since
n-grams extracted from a review like “I love it, it runs smooth
no lags or glitches” will include no lags, no lags or glitches,
etc. Synonyms merging also is not applied to n-grams to
avoid changing their meaning. Anyhow, n-grams containing
only stop-words (e.g.,“but I”) are removed, because they
could be present in many reviews, thus being useless for
discriminating among categories of reviews.

After text preprocessing has been performed, the resulting
bag of words and n-grams can be used as features for the
classifier. In addition, we use three additional features that
can help the machine learning algorithm to categorize the
review correctly: (i) the user rating provided along with the
review, (ii) the length of the review’s text, and (iii) the app’s
category.

Rating. It is likely that the rating of a review is somehow
related to its “category”. For example, reviews with very
positive ratings might be more likely to be less informative
(category other), because users may just express their satis-
faction; on the other hand, negative reviews might be more
likely to indicate a bug report or a suggestion for a new
feature.

Review length. We expect the length of a review to be a
good proxy of the quantity of information present in it. We
expect this predictor to be helpful, for example, in spotting
reviews recommending the implementation of new features
(since we expect such reviews to be particularly long).

App’s category. When using single words as predictor
variables (as in our approach), the semantic meaning of each
word is lost, because there is no context. While n-grams

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

help in alleviating this problem, they may not be sufficient.
Consider, for example, the word “freeze”: in the context of a
messaging app, it may indicate that the app stopped working,
thus being the symptom a bug report. Nevertheless, if the
same word is used in a review about a game, it may indicate
that the game lags too much, thus possibly indicating a report
of performance problems. To help the classifier in identifying the
semantic context of the review, we include the category of the
app as a predictor variable. Play Store divides apps in more
than 40 categories. In order to reduce the number of possible
values for such a variable, we defined 10 macro-categories in
which we mapped each of the Google Play categories9.

Training data, with pre-assigned values for the dependent
variables is used to train the classifier, in our case the Random
Forest model. The constructed decision trees are represented
by a set of yes/no questions that split the training sample into
gradually smaller partitions that group together cohesive sets
of data, i.e., those having the same value for the dependent
variable.

2.2 Clustering Related Reviews
In order to identify groups of related reviews (e.g., those
reporting the same bug), we cluster reviews belonging to the
same category (e.g., those in functional bug report). Clustering
reviews is needed for two reasons: (i) developers having
hundreds of reviews in a specific category could experience
information overloading, wasting almost all advantages
provided by the review classification, and (ii) knowing the
number of users who are experiencing a specific problem
(bug) or that desire a specific feature, already represents
an important information about the urgency of fixing a
bug/implementing a feature. Note that we only cluster
reviews classified as functional bug report or suggestion for new
feature since only for such categories we could have a benefit
identifying different groups. Indeed, reviews belonging to
the category other are not informative, so they do not need
to be analyzed at all, while reviews belonging to the four
considered non-functional requirements (report of security
issues, report of performance problems, report of excessive energy
consumption and request for usability improvements) should
already represent cohesive clusters (i.e., issues with the same
non-functional requirement), and thus they should not be
further partitioned.

Review clustering is performed by applying DBSCAN
[19], a clustering algorithm identifying clusters as areas of
high element density, assigning the elements in low-density
regions to singleton clusters (i.e., clusters only composed of a
single element). DBSCAN, differently from other clustering
approaches widely exploited in the literature (e.g., k-means),
does not require the a-priori definition of the number of
clusters to extract, an information clearly not available when
the clustering process starts.

In CLAP, the elements to clusters are the reviews in
a specific category and the distance between two reviews
ri and rj is computed as: dist(ri, rj) = 1 − V SM(ri, rj),
where VSM is the Vector Space Model [8] cosine similarity
between ri and rj . Before applying VSM the text in the
reviews is processed as described in the categorization

9. The mapping from the apps’ categories in Google Play to our 10
macro-categories is available in our replication package [36].

Fig. 3: Example of classification tree generated by CLAP
when prioritizing clusters.

step (Section 2.1), with the only exception of the synonyms
merging. Indeed, merging synonyms before clustering could
be counterproductive since, for example, a review containing
“freezes” and a review containing “crash” could indicate two
different issues. DBSCAN does not require the definition
a-priori of the number of clusters to extract. However,
DBSCAN requires the setting of two parameters: (i) minPts,
the minimum number of points required to form a dense
region, and (ii) ε, the maximum distance that can exist
between two points to consider them as part of the same
dense region (cluster). We set minPts = 2, since we consider
two related reviews sufficient to create a cluster, while in
Section 3 we describe how to set ε.

2.3 Prioritizing Review Clusters
The clusters of reviews belonging to the functional bug
report and suggestion for new feature categories as well as
those grouping together reviews pointing to issues in non-
functional requirements (i.e., report of security issues, report
of performance problems, report of excessive energy consumption
and request for usability improvements) are prioritized with the
aim of supporting release planning activities. Also in this
step CLAP makes use of the Random Forest machine learner
with the aim of labeling each cluster as high or low priority,
where high priority indicates clusters CLAP recommends to
be implemented in the next app release. Thus, the dependent
variable is represented by the cluster implementation priority
(high or low), while we use as predictor features:
The number of reviews in the cluster (|reviews|). The
rationale is that a bug/issues reported (feature suggested) by
several users should have a higher priority to be fixed (im-
plemented) than a bug/issue (feature) experienced (wanted)
by a single user.
The average rating of the cluster (rating). We hypothesize
that a review cluster having a low average (i.e., arithmetic
mean) rating has a higher chance to indicate a higher priority
bug/issue (or a feature to be implemented urgently) than
a cluster containing highly-rated reviews, and thus should
have a higher priority. For example, people frustrated by the
presence of critical bugs as well as by the miss of a killer
feature are more likely to lowly rating the app.
The difference between the average rating of the cluster and
the average rating of the app (∆ratingapp). This feature
aims at assessing the impact of a specific cluster on the app
total rating. We expect a lower difference (especially negative
ones) to indicate higher priority for the cluster (e.g., if the
average rating of the cluster is 2.5 and the average app rating
is 4, then the difference is -1.5).
The number of different hardware devices in the cluster
(|devices|). One of the information available to app devel-
opers when exporting their reviews from Google Play is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

the “Reviewer Hardware Model”, reporting the name of the
device used by the reviewer. We conjecture that the higher
|devices|, the higher the priority of a cluster. For example,
if a cluster of functional/non-functional bug report reviews
contains reviews written by users exploiting several different
devices, the bug object of the cluster is likely to affect a wider
set of users with respect to a bug only reported by users
working with a specific device. Similarly, this holds in the
case of “desired features”, since the same app can expose
different features on different devices (e.g., on the basis of
the screen size).

Also in this case, historical data with known (and labeled)
value of the dependent variable is used to build the Random
Forest decision tree. Note that, given the different nature
of reviews belonging to different types of clusters (i.e.,
functional bug report, suggestion for new feature, report of
security issues, report of performance problems, report of excessive
energy consumption, request for usability improvements), the
prioritization is performed separately for clusters containing
the different types of reviews. A portion of a tree generated
in this step can be found in Figure 3.

It is important to point out that CLAP prioritizes clusters
within each review category. It does not use the category for
prioritization purpose. In principle, one could be tempted to
give high priority to some categories, e.g., report of security
issues or functional bug report. However, we decided not to do
so as the intent of CLAP is to provide the project manager
with all elements—in our case categorization and clustering
first, within-category prioritization after—to make a decision,
and not replacing such a decision.

2.4 CLAP Prototype

CLAP allows developers to manage users’ reviews of their
apps. When a registered user logs in, she is presented with
a dashboard (Figure 4), showing (i) a chart presenting the
evolution over time of the average rating of the apps she
imported in CLAP, (ii) a pie chart depicting the number of
the reviews loaded in CLAP for each of the seven categories
and (iii) three boxes reporting key information, including
the number of apps currently managed via CLAP, the total
number of reviews imported from the Google Play store, and
the number of high priority tasks (i.e., high priority clusters).
Each of these boxes represents a shortcut to the related
information (e.g., it allows to quickly access the high priority
tasks). In the example shown in Figure 4 the user imported in
CLAP user reviews from the MOZILLA FIREFOX, FACEBOOK,
and TWITTER apps. By selecting one of the imported apps it
is possible to visualize its reviews are shown in Figure 6.

CLAP groups the app’s reviews into four tabs: One
grouping reviews reporting functional bugs, one for requests
for new features, one for reviews related to non-functional
requirements, and one for the “Other” category. In the
“Non-functional requirements” tab, each category of reviews
(i.e., report of security issues, report of performance problems,
report of excessive energy consumption and request for usability
improvements) is shown as a cluster of related reviews (see
Figure 5). Clusters painted in red indicate “high priority”
clusters, while those in grey are classified by CLAP as “low
priority” (e.g., in Figure 5 the cluster related to report of
security issues is marked as high priority).

Fig. 4: Dashboard of CLAP presented to a developer after
the login.

Fig. 5: Non-functional reviews from Facebook app. Non-
functional categories are shown as if they were clusters.

A similar organization is present in the tabs reporting
reviews related to functional bugs and to recommendations
for new features. The only difference is that here, each cluster,
groups together reviews reporting the same functional bug
or recommending the implementation of the same feature.
Figure 6 shows the GUI related to the functional bug reporting
tab. Each cluster has a label composed of (i) a simple
identifier (e.g., C1), and (ii) the four most frequent terms
in the reviews belonging to it. Again, red clusters are those
marked by CLAP as “high priority”, while grey clusters
have a “low priority”. The tool also provides a feedback
mechanism to allow the developer to indicate whether or not
she is going to implement the reviews contained in a cluster
(the gear button present on each cluster). Such a manual
feedback can be used by the developer to expand/revise the
automatic prioritization training set according to the reviews
she actually implements. This allows to adapt CLAP’s future
recommendations to the specific user preferences (e.g., some
users could prefer to always prioritize clusters having high
values of |reviews|, while others could focus more on those
having very low ∆rating).

Finally, by expanding a cluster, one can see the reviews it
contains. As it can be seen in the example, the two reviews
of cluster C56 report a similar problem: the users say that the
TWITTER app has some kind of problem with notifications.
Also in this case there is a feedback mechanism to change
the review category (consequently modifying the training
set used by CLAP to learn how to categorize reviews) or
to assign it to a different cluster (see Figure 6). This option

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Fig. 6: Reviews of Twitter app imported in CLAP and
automatically categorized, clustered and prioritized.

allows developers to manually correct clustering mistakes
made by CLAP. Developers can also lock a cluster they
manually defined so that, when new reviews are imported,
CLAP will not modify such clusters.

3 EMPIRICAL STUDY DESIGN

The goal of this study is to evaluate CLAP in terms of its (i)
accuracy in categorizing user reviews in the seven categories
of interest (i.e., functional bug report, suggestion for new feature,
report of performance problems, report of security issues, report of
excessive energy consumption, request for usability improvements
and other), (ii) ability in clustering related user reviews
belonging to the same category (e.g., all reviews reporting the
same functional bug), (iii) ability in proposing meaningful
recommendations on how to prioritize the bugs to be fixed
and new features to be implemented while planning the next
release of the app, and (iv) its suitability in an industrial
context. The context of the study consists of 4,025 reviews of
Android mobile apps and three Italian software companies.

3.1 Research Questions

In the context of our study we formulated the following four
research questions (RQ):

• RQ1: How accurate is CLAP in classifying user reviews in
the considered categories? This RQ assesses the accuracy
of CLAP in classifying user reviews in the considered
categories. It aims at evaluating the step “categorizing
user reviews” described in Section 2.1.

• RQ2: How meaningful are the clusters of reviews generated
by CLAP? This RQ focuses on the meaningfulness of
clusters of reviews extracted by CLAP in a specific
category of reviews (e.g., those reporting functional
bugs). We are interested in assessing the differences
between clusters of reviews automatically produced
by CLAP with respect to those manually produced by
developers. RQ2 evaluates the step “clustering related
reviews” described in Section 2.2.

• RQ3: How accurate is the reviews prioritization recommended
by CLAP? Our third RQ aims at evaluating the relevance
of the priority assigned by CLAP to the reviews to
be implemented in sight of the next release of the
app. We assess the ability of CLAP in predicting
which functional/non-functional bugs will be fixed
(features will be implemented) by developers among

TABLE 2: Objects used in our research questions.
RQ #Apps #Reviews Origin

RQ1 705 3,000 Randomly selected from [14]
RQ2 5 200 Reviews from popular apps referring to the same app release
RQ3 14 725 Selected on the basis of specific criteria from [14] and F-Droid
RQ4 2 100 Reviews from two very popular apps (Facebook and Twitter)

those reported (requested) in user reviews of release ri
when working on release ri+1. This RQ evaluates the
prioritization step described in Section 2.3.

• RQ4: Would actual developers of mobile applications consider
exploiting CLAP for their release planning activities? For
a tool like CLAP, a successful technological transfer
is the main target objective. In RQ4 we investigate the
industrial applicability of CLAP with the help of three
software companies developing Android apps. Thus,
RQ4 evaluates the CLAP prototype tool as a whole, as
described in Section 2.4.

3.2 Context Selection and Data Analysis

Table 2 summarizes the objects (i.e., apps and user reviews)
used in each of our research questions. To address RQ1 we
manually classified a set of 3,000 users reviews randomly
selected from 705 different Android apps extracted from the
dataset by Chen et al. [14]. In particular, two of the authors
independently analyzed the 3,000 reviews by assigning each
of them to a category among the seven considered in our
tool. Then, they performed an open discussion to resolve any
conflict and reach a consensus on the assigned category. This
was needed for 268 (9%) out of the 3,000 reviews. In total,
of the considered 3,000 reviews we labeled 764 as functional
bug report, 333 as suggestion for new feature, 50 as report of
security issues, 135 as report of performance problems, 107 as
request for usability improvements, 106 as report of excessive
energy consumption and 1505 as other. Then, we used this
dataset to compute the overall average accuracy of the model
by using a 10-fold cross validation. We used the WEKA’s
default configuration for the Random Forest classifier, i.e.,
we set the number of trees to 100, the number of randomly
chosen attributes to 0 and the maximum depth of the trees to
“unlimited”. We assess the overall performance of the model
with its recall, precision, and F-Measure. Also, we dig into
the results by presenting (i) the obtained confusion matrix,
(ii) the model accuracy for each of the seven considered
categories, and (iii) the Area Under the ROC curve (AUROC)
[10] obtained for each category as well as for the overall
model. An AUROC of 0.5 indicates a model having the same
prediction accuracy in identifying true positives as a random
classifier. A prefect model (i.e., zero false positives and zero
false negatives) has instead AUROC=1.0. Thus, the closer the
AUROC to 1.0, the higher the model performances.

We also compare our approach to AR-MINER10 [15],
able to classify reviews into informative and not informative.
Since the categories taken into account by the two tools
are different, we performed two different comparisons: (i)
we generalized CLAP, so that it categorizes reviews as
informative and not informative and (ii) we specialized AR-
MINER to classify reviews into the same seven categories
considered by CLAP. As for the CLAP generalization, we

10. Since AR-MINER is not publicly available, we re-implemented
such an approach.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

considered the reviews belonging to the category other as
not informative, and all the other reviews as informative. We
specialized AR-MINER using all the seven categories used
by CLAP in the Expectation Maximization for Naive Bayes
(EMNB) algorithm, exploited by AR-MINER to filter reviews.
Indeed, such an algorithm can be used to classify documents
in an arbitrary number of categories.

For RQ2 we manually collected a second set of 200 user
reviews among five Android apps, i.e.,FACEBOOK, TWITTER,
YAHOO MOBILE CLIENT, VIBER, and WHATSAPP. For this
research question we have selected very popular apps since
we needed to collect from each app a good number of reviews
(i) related to the same app’s release, and (ii) belonging to the
functional bug report or to the suggestion for new feature category.
We randomly selected from each of these apps 40 reviews,
20 bug reports and 20 suggestions for new features, referring
to the same app’s release11. Then, we asked three industrial
developers having over five years of experience each to
manually clustering together the set of reviews belonging
to the same category (e.g., functional bug report) in each app.
We clearly explained to the developers that the goal was to
obtain clusters of reviews referring to the same bugs to be
fixed or feature to be implemented.

The three developers independently analyzed each of
the 200 reviews to cluster them. After that, they reviewed
together their individual clustering results and provided us
a single “oracle” reflecting their overall point of view of
the existing clusters of reviews. Once obtained the oracle,
we used CLAP, and in particular the process detailed in
Section 2.2, to cluster together the same sets of reviews.

As previously explained, to apply the DBSCAN clustering
algorithm we need to tune its ε parameter. We performed
such a tuning by running the DBSCAN algorithm on the
YAHOO app varying ε between 0.1 and 0.9 at steps of 0.1
(i.e., nine different configurations). Note that it does not
make sense to run DBSCAN with ε = 0.0 or ε = 1.0 since
the output would trivially be a set of singleton clusters in
the former case and a single cluster with all reviews in the
second case. To define the best configuration among the nine
tested ones, we measured the similarity between the two
partitions of reviews (i.e., the oracle and the one produced by
CLAP) by using the MoJo eFfectiveness Measure (MoJoFM)
[41], a normalized variant of the MoJo distance computed as
follows:

MoJoFM(A,B) = 100− (
mno(A,B)

max(mno(∀EA, B))
× 100)

where mno(A,B) is based on the minimum number of Move
or Join operations one needs to perform in order to transform
a partition A into a partition B, and max(mno(∀ EA, B) is
the maximum possible distance of any partition A from the
partition B. Thus, MoJoFM returns 0 if partition A is the
farthest partition away from B; it returns 100 if A is exactly
equal to B. The results of this tuning are shown in Figure 7.
In general, values between 0.5 and 0.7 allows to achieve good
performances, with the highest MoJoFM reached at 0.6. This
is the default value in CLAP, and thus the one we will use
in the evaluation.

11. As previously said, in CLAP we are not interested in clustering
reviews belonging to the other category, as well as the ones belonging to
the non-functional categories.

M
oJ

oF
M

10
0

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0
ε

Fig. 7: Tuning of the ε DBSCAN parameter.

In order to evaluate the CLAP’s clustering step, we
measured the MoJoFM distance on reviews of the remaining
apps (i.e., excluding YAHOO). Also in this case, we compare
the results achieved by CLAP to the results achieved by
AR-MINER. Such a tool uses LDA to divide the reviews into
topics. Such an approach requires to specify the number
of topics (k) to extract from the given set of reviews. To
experiment with this approach in its most favorable scenario,
we set k equals to the number of clusters manually defined by
the developers for each set of reviews we considered in our
study. For example, when we clustered reviews from Twitter
(category functional bug report), we set k = 13, because the
developers clustered such reviews into 13 groups; on the
other hand, we used k = 11 for the category suggestion for
new feature of the app Facebook, because such reviews were
clustered into 11 groups. Thus, the approach behind AR-
MINER has been experimented with an optimal setting of the
k parameter.

To answer RQ3 we exploited the Android user reviews
dataset made available by Chen et al. [14]. This dataset reports
user reviews for multiple releases of ∼21K apps, showing
for each review: (i) the date in which it has been posted,
(ii) the app’s release it refers to, (iii) the user who posted
it, (iv) the hardware device exploited by the user, (v) the
rating, and (vi) the textual content of the review itself. In
addition, each app in the dataset is associated to a metadata
file containing its basic information, including the “updated”
optional field that app’s developers can use to describe the
changes they made to the different app’s releases (i.e., a
sort of release note shown in the Google Play store). We
exploited such a dataset to build, for a given app, an oracle
reporting which of the reviews left by its users for the release
ri have been implemented by the developers in the release
ri+1 (i.e., high priority reviews) and which, instead, have been
ignored/postponed (i.e., low priority reviews). To reach such
an objective, firstly we identified the apps in the dataset
having all the information/characteristics required to build
the oracle:

1. A non-empty “updated” field containing at least one English
word. As said before, this is an optional field where the app
developers can report the changes they applied in a specific
app’s review. This first filtering was automated by looking for
the “updated” fields matching at least one term (excluding
articles) in the Mac OS X English dictionary. This left us with
∼11K apps.

2. Explicitly reporting the app’s version to which the “updated”

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

field refers. Often developers simply put in the “updated” field
the changes applied to the last release of the app without
specifying the “release number” (e.g., release 2.1). This is an
information needed to build our oracle. Indeed, starting from
the release note (i.e., the content of the updated field) of a
specific release ri+1, we have to look at the reviews left by
users of the release ri to verify which of them have been
actually implemented by the developers. We adopt regular
expressions (e.g., version | release | v | r followed
by at least two numbers separated by a dot) to automatically
identify apps reporting the release number in the “updated”
field. This left us with ∼1.4K apps.

3. Having a non-ambiguous release note (update field). Release
notes only containing sentences like “fixed several bugs” or
“this release brings several improvements and new features”
are not detailed enough to understand which of the user
reviews have been implemented by developers. For this
reason, one of the authors manually looked into each of these
1.4K apps for those containing a non-ambiguous release note.
This selection led to only 73 apps remaining.

4. Having available at least 30 reviews for the release ri
preceding the ri+1 described in the release note. The dataset
by Chen et al. does not report reviews for all releases of
an app. Thus, it is possible that the reviews for ri are not
available or are too few for observing something interesting.
This further selection process led to the five apps consid-
ered in our study: barebones 3.1.0, hmbtned 4.0.0,
timeriffic 1.11, ebay 2.6.1, and viber 4.3.1.

The five selected app releases received a total of 18,591
user reviews from the ri releases to be labeled as “imple-
mented” or “not implemented” in ri+1. Since manually
labeling all of them would not be feasible in a reasonable
time, a a statistically significant random sample of reviews
with 95% confidence level and 5% confidence interval was
extracted. This resulted in 463 reviews that were manually
analyzed, and labeled as implemented/not implemented on
the basis of the information contained in the related release
note. Also in this case, conflicts (raised for 37 reviews) were
solved with an open discussion.

Given the low number of apps suitable for our study
that we were able to identify in the dataset by Chen et
al. [14], we looked on F-Droid12, a forge of open source
apps, for additional apps suitable for our study. Overall, we
analyzed 30 apps: We mined their Google Play page as well
as the commit history from their repository selecting the
apps satisfying the following requirements:

1. Having a repository with tagged releases. We excluded
all the apps do not tagging commits with the app’s release
they refer to. This was necessary to identify the sequence of
commits (changes) performed by developers while working
on a release ri+1. Indeed, as detailed later, we used this
information to verify which of the users’ reviews posted for
ri was actually implemented by developers in ri+1.

2. Having at least one release ri having at least 30 reviews on
the Google Play store. This was needed to have enough reviews
on which perform clustering and prioritization. Versions

12. https://f-droid.org

TABLE 3: Total number of clusters and high/low-priority
clusters for each category used to answer RQ3.

Category Total number High-priority Low priority

functional bug report 113 13 97
suggestion for new feature 74 11 60
report of security issues 5 0 4
report of performance problems 6 1 5
report of excessive energy consumption 2 0 2
request for usability improvements 7 2 5

Total 200 27 173

of apps having less than 30 reviews were automatically
discarded.

With these two selection criteria, we collected
the following nine apps: ifixit 1.3.1, duckduckgo
2.1.1, zxing 4.6.2, ringdroid 2.5, boinc 7.2.7,
dolphin 0.11, wordpress 2.7.1, 2048 1.8 and
linphone 1.0.16. Then, we cloned the git repository of
each app, and one of the authors manually analyzed the
sequence of commits going from the tagged version ri to
the tagged version ri+1 to check which of the requests from
ri’s users’ reviews were implemented in ri+1. In this way,
each of the reviews belonging to the ten considered app’s
releases was tagged as “implemented” or “not implemented”
(as previously done for the five apps from the dataset by
Chen et al. [14]).

The study is conducted in a scenario in which the cate-
gorization of the reviews into functional bug report, suggestion
for new feature, report of performance problems, report of security
issues, report of excessive energy consumption, request for usability
improvements and other, as well as the result of the clustering
step has been manually checked (and fixed, when needed)
by the developer. To support such a scenario, also in this case
two authors (i) categorized the reviews manually labeled as
implemented/not implemented in one of the six informative
categories (reviews belonging to the category other were
excluded), and (ii) manually clustered them. Table 3 shows
the number of clusters for each category, and how many
clusters were classified as high-priority or low-priority.

Once built the oracle for the 14 apps, we assess the
ability of CLAP, and in particular of the prioritization step
described in Section 2.3, to correctly identify the clusters
of reviews that should be prioritized in sight of the next
app’s release (i.e., those that have been actually implemented
by developers in the ri+1 reviews). To achieve this goal,
we perform a ten-fold validation on the set of clusters
manually defined. Given the unbalanced distribution of
high priority and low priority clusters (i.e., 27 vs 173 totally),
at each iteration of the ten-fold validation the training-set
was balanced using the SMOTE filter [13], which produced
artificial instances of low priority clusters. To avoid any bias,
no changes were applied to the test-set. We use the same
metrics employed in RQ1 to assess the CLAP prioritization
accuracy.

Finally, to answer RQ4 we conducted semi-structured
interviews with the project managers of three software
companies developing Android apps13. Before the interviews,
one of the authors showed a demo of CLAP, and let the par-
ticipant interact with the tool. To avoid biases and evaluate
the tool with a consistent set of reviews, all project managers

13. RQ4’s participants were not the same involved in RQ2.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

worked with a version of CLAP having the reviews for
TWITTER and FACEBOOK imported. Note that, using the
reviews of the apps developed by the three companies was
not an option, since most of the reviews they receive are
not in English and the current implementation of CLAP
only supports such a language. The interviews lasted for
two hours with each company. Each interview was based
on the think-aloud strategy. Specifically, we showed all the
tool features to the managers to get qualitative feedback on
both the tool and the underlying approach. In addition, we
explicitly asked the following questions:

Usefulness of reviews. Do you analyze user reviews
when planning a new release of your apps?

Factors considered for the prioritization phase. Are the
factors considered by CLAP reasonable and sufficient for the
prioritization of bugs and new features?

Review categories. Is the categorization of reviews into
the seven considered categories sufficient for release planning
or there are other categories that should be taken into
account?

Tool usefulness. Would you use the tool for planning
new releases of your apps?

Participants answered each question using a score on
a four-point Likert scale: 1=absolutely no, 2=no, 3=yes,
4=absolutely yes. The interviews were conducted by one
of the authors, who annotated the provided answers as
well as additional insights about the CLAP’s strengths and
weaknesses that emerged during the interviews14.

3.2.1 Replication Package
The material used in our studies along with its working data
set is publicly available in our replication package [36]. In
particular, we include:

• RQ1: The training sets and the test sets for the 3,000 user
reviews. The sets are provided in ARFF format, to be run
with the WEKA implementation of the Random Forest
to replicate our results.

• RQ1: The categorization accuracy obtained by CLAP us-
ing different machine learning algorithms (i.e., Random
Forest, Rotation Forest, J48, Bayesian Network, Simple
Cart, and SMO, a support vector classifier)).

• RQ2: The 160 user reviews classified as functional bug
reporting/suggestion for new features used to evaluate
the CLAP clustering feature.

• RQ2: The clustering oracles manually build by the
three industrial developers (includes a README file
explaining how to interpret them).

• RQ3: The list of implemented/not implemented reviews
for the 14 considered apps.

• RQ3: The ten training sets and test sets for the 207
prioritized clusters. The sets are provided in arff
format, to be run with the WEKA implementation of
the Random Forest to replicate our results.

• A csv file reporting the mapping from the apps’ cate-
gories in Google Play to our 10 macro-categories (see
Section 2.1).

14. Note that the interviews reported in this paper are updated
versions of the ones from our ICSE paper [40]: We contacted again the
project managers, showed them the new CLAP version, and collected
their new thoughts.

4 STUDY RESULTS

This section reports the analysis of the results for the four
research questions formulated in Section 3.1.

4.1 RQ1: How accurate is CLAP in classifying user
reviews in the considered categories?

Table 4 reports the Recall, Precision, F-Measure and AUROC
achieved by CLAP and AR-MINER when categorizing the
reviews as informative and not informative. In particular, we
measured such metrics for each category as well as for the
overall model for both the approaches. It is clear that both
approaches perform very well, with CLAP achieving slightly
better performance than AR-MINER for all the considered
metrics (+3% in terms of Precision, Recall and F-Measure
and +0.02 in terms of AUROC). It is worth noting that, even
if the improvement is minimal in absolute terms, it is very
hard to obtain any type of improvement starting from a
such high accuracy (∼90%). This confirms that state-of-the-
art categorization techniques are very good in recognizing
informative and not informative user reviews.

Table 5 reports the Recall, Precision, F-Measure and AU-
ROC achieved by CLAP and AR-MINER when classifying
user reviews in the seven categories considered by our approach.
Also in this case, we measured such metrics for each category
as well as for the overall model for both the compared
approaches.

The average F-Measure achieved by CLAP across the
seven categories is 86%, with an AUROC of 0.96. The results
show that the automatic classification of reviews belonging
to some categories, such as functional bug report, report of
excessive energy consumption and other, can be very accurate,
with an F-Measure higher than 80%. On the other hand, for
some categories, such as request for usability improvements,
report of security issues and report of performance problems
the F-Measure achieved by the classifier is lower than 70%.
This shows that the model experiences more difficulties in
correctly discriminate these types of reviews, likely because it
is difficult to identify a set of words/n-grams characterizing
them (as a sort of fingerprint). As an example, reviews
indicating a request for usability improvements often contain
words like unusable or n-grams like difficult to use. However,
some of these reviews only contain a generic description of
the problem, which can be attributed to a usability issue.
Let us take into account the following example: With the
latest update I’m now able to sign into the app on my Galaxy
S4 and it is considerably more stable and responsive on my Nook
HD+, but unfortunately now when I try to read comics, the
pages only take up about 2/3 of the screen available [...]. This
review does not contain any word or n-gram that could
help CLAP in discerning that it belongs to the request for
usability improvements category. Despite these errors, it is
worth noticing that the AUROC value is always higher or
equal than 0.90, showing a prediction accuracy quite far from
a random classifier.

As compared to AR-MINER, CLAP achieves a higher
AUROC for all the categories. Also, our tool always achieves
a higher F-Measure, with the only exception of the report of
security issues category. Overall, CLAP achieves a +4% in
terms of F-Measure as compared to AR-MINER.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

TABLE 4: RQ1: Classification Accuracy of Reviews (generalized CLAP).

Category Precision Recall F-Measure AUROC
CLAP AR-MINER CLAP AR-MINER CLAP AR-MINER CLAP AR-MINER

Informative 90% 87% 90% 92% 92% 89% 0.97 0.95
Not informative 93% 92% 93% 86% 92% 89% 0.97 0.95

Overall 92% 89% 92% 89% 92% 89% 0.97 0.95

TABLE 5: RQ1: Classification Accuracy of Reviews (specialized AR-MINER).

Category Precision Recall F-Measure AUROC
CLAP AR-MINER CLAP AR-MINER CLAP AR-MINER CLAP AR-MINER

functional bug report 91% 80% 90% 91% 90% 85% 0.97 0.95
suggestion for new feature 63% 61% 84% 77% 72% 68% 0.94 0.92
report of security issues 65% 100% 66% 52% 65% 68% 0.93 0.87
report of performance problems 79% 65% 52% 36% 63% 47% 0.90 0.78
report of excessive energy consumption 76% 82% 86% 75% 81% 78% 0.97 0.94
request for usability improvements 85% 59% 47% 37% 60% 46% 0.90 0.79
other 92% 91% 91% 87% 91% 89% 0.97 0.94

Overall 87% 82% 86% 82% 86% 82% 0.96 0.93

TABLE 6: RQ1: Confusion Matrix for CLAP.

functional bug report sugg. new feature security related performance related energy related usability related other

functional bug report 684 33 1 7 6 3 30
sugg. new feature 9 280 0 3 3 2 36
security related 6 2 33 0 0 0 9
performance related 24 16 2 70 4 1 18
energy related 1 3 1 0 91 0 10
usability related 9 25 2 0 1 50 20
other 19 85 12 9 14 3 1363

4.1.1 Studying Factors Influencing CLAP’s Classification
Accuracy

The results discussed above for CLAP are the ones achieved
using the full categorization approach described in Section 2.
When designing the approach, we conjectured that the low
frequency of some types of reviews, such as report of security
issues, could result in a low automatic categorization accuracy
for such categories. Therefore, we use the SMOTE filter to
balance the training sets in the 10-fold cross-validation. To
check the real effectiveness of such a step, we performed a
comparison between the categorization approach with and
without SMOTE. The overall F-Measure achieved by the
two versions of the approach is very similar (85% without
SMOTE and 86% with SMOTE). However, if we consider
the single categories, SMOTE is helpful for improving
the categorization accuracy. Specifically, with SMOTE we
improve the F-Measure for report of performance problems
and request for usability improvements by 8% each. For the
other categories, the achieved F-Measures is almost the
same (±1%). Surprisingly, SMOTE is not helpful for report of
security issues, which is the least represented category (only
50 review).

We also investigated to what extent the quantity of
available training data influences the categorization step.
To do this, we tested our approach training the classifier with
an increasing number of training instances. Specifically, we
randomly split the 3,000 reviews considered in our dataset
into ten folds (300 reviews per fold). We used each fold, in
turn, as test set and the nine remaining fold as the training
set. Thus, the training set is composed at each iteration by
2,700 reviews. Then, at each iteration, we trained the model
only on a subset of reviews from the training set, going from

10% to 100% at steps of 10%. This means that we experiment
our approach with a training set size going from 270 to 2,700
at steps of 270 (i.e., 270, 540, 810, etc.). We computed the
overall F-Measure achieved by the classifier when using the
training sets of different size. Figure 8 shows the results of
this experiment (note that the y-axis starts at 80% for the
sake of legibility). Using just 10% of the training instances
(i.e., 270 reviews) it is possible to achieve 80% of F-Measure;
also, with 60% of the training instances (i.e., 1,620 reviews)
it is possible to achieve an F-Measure not far from the one
achieved using the whole training set (∼ 86%).

Table 6 reports the confusion matrix obtained by CLAP.
The three most frequent cases of misclassification occurred
in our evaluation are:

• Classifying other as suggestion for new feature (86 in-
stances). These errors are often due to specific corner
cases in which there are misleading words (e.g., “Ex-
cellent set of features added in this release”) or in which
negation handling is not sufficient (e.g., “The app lacked
of [...] but now it is ok”).

• Classifying suggestion for new feature and functional bug
report as other (30 and 36 instances, respectively). These
errors occur when the review does not contain any
word/n-gram symptomatic of its category (e.g., “Time
wasted trying to send a new message”).

• Classifying functional bug report as suggestion for new
feature (33 instances). These errors are often caused by
reviews particularly misleading for CLAP (e.g., “[...]
Please add a check to the date field”). The “check to the date
field” is seen as a feature to (Please) add by CLAP, thus
leading to a misclassification.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

TABLE 7: RQ2: MoJoFM achieved by CLAP and AR-MINER.

Facebook Twitter Viber Whatsapp Average

CLAP func. bug report 78% 63% 71% 89% 75%
sugg. new feature 78% 78% 82% 94% 83%

AR-MINER
func. bug report 59% 47% 43% 72% 55%
sugg. new feature 31% 41% 52% 47% 43%

4.2 RQ2: How meaningful are the clusters of reviews
generated by CLAP?
Table 7 shows the MoJoFM between the clusters of reviews
manually defined by developers and those resulting from
the clustering step of CLAP and AR-MINER. The average
MoJoFM of CLAP is 75% when clustering reviews reporting
functional bugs, and 83% for what concerns reviews recom-
mending new features, suggesting a high similarity between
manually- and automatically-created clusters.

Moving to AR-MINER, it clusters the reviews in groups
substantially different from the ones manually created,
achieving an average MoJoFM of 55% when clustering
reviews reporting functional bugs and 43% for reviews
recommending new features. While in the categorization step
the two approaches achieved pretty similar results, CLAP
performs significantly better in clustering reviews.

In order to give a better idea of the meaning of such
MoJoFM values, Figure 9 shows the two partitions of reviews
manually-created by the developers involved in the study
(left side) and automatically generated by CLAP (right side)
for the 20 Whatsapp reviews reporting functional bugs. The
points in light grey represent the 13 reviews considered
both by developers and by CLAP as singleton clusters (i.e.,
each of these reviews recommended a different feature). The
points in black represent, instead, the reviews clustered by
developers into two non-singleton clusters, depicted with
different colors in Figure 9. The first cluster (the green one) is
exactly the same in the oracle and in the clusters generated
by CLAP. The yellow cluster is similar between the two
partitions. However, in the automatically generated partition
it does not include the review R5, isolated as a singleton
cluster by CLAP. This difference causes the MojoFM to be
valued 89% (100% is the value for two identical partitions).

The example reported in Figure 9 provides an idea about
the errors made by CLAP in clustering related reviews. We
observed as it tends to be more conservative in clustering the
reviews with respect to the manually produced oracle (i.e., it

Fig. 8: RQ2: Categorization F-Measure with an increasing
percentage of training data.

TABLE 8: RQ3: Prioritization accuracy.

correctly classified false positive false negative

functional bug report 90% 6% 5%
sugg. new feature 91% 3% 6%
non-functional 79% 10% 10%

generates more singleton clusters). While this could suggest
a wrong calibration of the ε parameter, we also replicated this
study with ε = 0.7, ε = 0.8, and ε = 0.9 since higher values
of ε should promote the merging of related reviews. However,
these settings resulted in lower values of the MoJoFM across
all experimented systems, due to a too aggressive merging
of reviews.

4.3 RQ3: How accurate is the reviews prioritization rec-
ommended by CLAP?
Table 8 reports the accuracy achieved by CLAP in classifying
as high priority or low priority clusters of functional bug
report, suggestion for new feature and non-functional reviews
(i.e., report of security issues, report of performance problems,
report of excessive energy consumption and request for usability
improvements). False positives are clusters wrongly classified
by CLAP as high priority, while false negatives are clusters
wrongly classified as low priority.

CLAP correctly prioritizes 90% of clusters containing
functional bug report reviews (97 out of 108), producing six
(∼ 6%) false positives and five (∼ 5%) false negatives. The
accuracy is slightly higher when prioritizing new features
to be implemented, with 91% of correctly classified clusters
(63 out of 70), three false positives (∼ 3%) and four false
negatives (∼ 6%). Finally, the classification of clusters having
reviews reporting issues with non-functional requirements is
also high (79%). The overall AUROC achieved by CLAP as
for prioritization is 0.775.

For example, a functional bug report cluster correctly highly
prioritized by CLAP is the one from the ebay app, in which
141 different users using a total of nine different hardware
devices were pointing out a bug present in the release 2.6.0
that prevented the app user to visualize the seller’s feedbacks.
This cluster also had a very low average rating (rating =
2.2), much lower that the average app rating (∆ratingapp =
-1.9). The ebay developers fixed this bug in the release 2.6.1,
reporting in the release note: “Fixed bug where seller feedback
would not load”.

MoJoFM(Whatsapp_Features) = 89%

Oracle Recommended

R4
R3 R5

R7
R6

R7
R6

R1
R2 R4

R3 R5R1
R2

Fig. 9: RQ2: CLAP vs oracle when clustering suggestions for
new features on Whatsapp.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

A false negative generated by CLAP when prioritizing
clusters reporting suggestions for new features is a singleton
cluster from the barebones app, a lightweight mobile
browser. One of the users reviewing the release 3.0 assigned
five stars to the app and asked for the implementation of
search suggestions (“I wish it can have search suggestions in the
search bar”). Despite the single user requiring such a feature
and the high rating she assigned to the app, the barebones
developers implemented search suggestions in the release 3.1:
“Added Google Search Suggestions”. The characteristics of this
cluster led CLAP to a misclassification, since the decision
trees generated in the prioritization step tend to assign a
high priority to clusters having high values for |reviews|
and |devices|, and low values for rating and ∆ratingapp
(see the example in Figure 3). Note that these classification
trees are the results of the training performed on the 14
considered apps. In a real scenario, the CLAP user can
explicitly indicate which clusters she is going to implement,
allowing the machine learner to adapt the classification rules
on the basis of the user feedback.

To further assess the prioritization performance of CLAP,
we compared it with the prioritization performed by AR-
MINER [15]. Both techniques aim at prioritizing groups of
reviews based on their “importance” for developers (i.e., their
relevance when working on a subsequent release).

The prioritization applied by AR-MINER focuses on
the reviews classified as informative and it is based on a
weighted sum of three factors: (i) the number of reviews in
the group (cluster), (ii) the average rating of the reviews in the
group, and (iii) the temporal distribution of reviews (more
recent reviews are considered more important). Since AR-
MINER is not available, we reimplemented its prioritization
feature, and tuned the weighting parameters as reported
in [15]. Then, we applied AR-MINER on the same set of
clusters prioritized by CLAP. In particular, we considered as
informative, the reviews not falling in the other category and
as clusters to prioritize those manually defined (i.e., exactly
the same clusters prioritized in this evaluation by CLAP).
Then, we compare the Area Under the Curve (AUC) for both
techniques. We use AUC as AR-MINER produces a ranked
list whereas CLAP produces a classification, hence it is not
possible to directly compare precision and recall values.

Both CLAP and AR-MINER obtain an average AUC
of 0.87 when prioritizing reviews. While the prioritization
performance of the two approaches is comparable, it is
worth noticing that CLAP (i) separately prioritizes reviews
belonging to different categories, thus providing additional
information to the developer (this was not done in this com-
parison in order to compute the AUC for the two techniques
on exactly the same set of reviews’ clusters/groups), and (ii)
exploits a machine learner to prioritize clusters of reviews.
This latter characteristic, combined with the feedback mecha-
nism implemented in our tool (see Section 2.4), allows CLAP
to learn from the developer her prioritization preferences.
AR-MINER, instead, prioritizes groups of reviews on the
basis of a fixed weighted sum of prioritization factors.

4.3.1 Studying Factors Influencing CLAP’s Prioritization
Accuracy
As we did for the CLAP categorization step, we studied the
impact of the SMOTE filter also on the clusters’ prioritization.

In this case, we conjectured that the low frequency of high
priority clusters could result in a suboptimal prioritization.
Thus, we compared the prioritization approach with and
without the use of the SMOTE filter. The overall accuracy
achieved by the two versions of the approach is similar (+1%
without SMOTE), but the recall achieved by our approach
(i.e., its ability to correctly identify high-priority clusters)
is much higher when using the SMOTE filter (+8% for
functional bug report, +18% for suggestion for new feature, no
changes for non-functional clusters). In this prioritization
step, given the similar accuracy obtained by the configuration
with/without SMOTE, we believe that the configuration
using SMOTE should be preferred, since it misses less
important clusters of reviews that must be considered by
the developer when working on the next release of her
app. In other words, we prefer to have more false positives
(i.e., low-priority clusters classified as high-priority) than
true negatives (i.e., high-priority clusters classified as low-
priority), to minimize the number of high-priority clusters
missed by the approach.

Note that, differently from what done for the categoriza-
tion step, we do not analyze the influence of the training set
size on the prioritization accuracy. This is due to the limited
size of data we have available in this case (207 clusters of
reviews to prioritize across three different categories, i.e.,
functional bug report, sugg. new feature, and non-functional).
For example, we only have 17 clusters of reviews related to
non-functional requirements. We plan to run such an analysis
as part of our future work and by exploiting the clusters of
reviews manually prioritized by developers using our tool.

4.4 RQ4: Would actual developers of mobile applica-
tions consider exploiting CLAP for their release plan-
ning activities?

In order to answer our last research question, we qualitatively
discuss the outcomes of the semi-structured interviews we
conducted with project managers of three Italian companies
aimed at analyzing the practical applicability of CLAP in a
real development context.
Nicola Noviello, Project manager @ Next [4]. Nicola an-
swered our first question (i.e., usefulness of user reviews)
with “absolutely yes”, specifying that before planning a new
release of an app, the developers of his company manually
analyze the app reviews to identify critical bugs or feature
recommendations. Nicola also confirmed that such a task
is time consuming: when planning the release 2.0 of the
app UNLIKELY QUOTES [6] “A developer spent two days in
analyzing more than 1,000 reviews. While the need to fix some
bugs and to implement some features was easily spotted due
to the fact that they were reported (required) by several users,
there were also interesting features and critical bugs hidden in
a large amount of non informative reviews. I strongly believe
that CLAP would have sensibly reduced the effort we spent to
identify such reviews.” Nicola also positively answered to our
questions related to the completeness of the categories of
the reviews considered by CLAP and the factors it uses for
prioritization (“absolutely yes” to both of them). Concerning
the review categories considered by CLAP, Nicola suggested
an additional category that could be considered: “reviews
referring to the app sales plan”. Nicola considers these reviews

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

“very important” and he explained that “the version 2.0 of
the app Unlikely quotes was released both in a free and non-free
versions, with the latter introducing some features for which the
users explicitly claimed (in their reviews) that they will to pay for
having such functionalities.” Thus, user reviews could not only
be useful to plan what to implement in the next release of
an app, but also to define the sale strategies. Finally, Nicola
was really enthusiastic about CLAP and he will be happy to
use it in his company. Indeed, he considers the tool highly
usable and ready to the market. He also pointed out two
possible improvements for CLAP. First, it would be useful
to make the tool able to store and analyze user reviews
coming from different stores (e.g.,, Google Play and Apple
App Store): “putting together reviews posted by users running
the app on different platforms could be important to discriminate
between bugs strongly related to the app from those lying in the
server-side. For example, if the bug is reported by both Android
and iOS users, it is very likely that the bug is in the services
exploited by the app, rather than in the app itself.” Also, Nicola
suggested to integrate in CLAP a mechanism that allows
to read and analyze “the reviews of competitive apps in order
to identify features for my app that are not explicitly required by
my users, but that have been suggested by users of competitive
apps. In other words, I do not want to listen only to my users but
also the users of competitive apps!” Clearly, this would require
the implementation of techniques to automatically identify
similar apps. We consider this point as part of our future
work agenda.
Giuseppe Socci, Project manager @ Genialapps [2]. As well
as Nicola, Giuseppe answered “absolutely yes” to our first
question related to the usefulness of user reviews: “Very
often reviews are informative and useful to understand which
are the directions for new releases. I usually analyze the reviews
manually and such a task is really time consuming. In the first
year of life of our app Credit for 3 [1], I analyzed more than 11,000
reviews, dedicating six or seven hours per week to this specific
task. However, keep up with the reviews helps a lot in making the
app more attractive.” Giuseppe also answered “absolutely yes”
to our second question related to the completeness of the
review categories, claiming that he generally considers less
fine-grained categories when analyzing the reviews (only bug
reporting and suggestions for new features), but finds very
interesting the ones related to non-functional requirements.
Instead, Giuseppe answered “yes” to the question related to
the completeness of the factors used to prioritize the bugs
and the new features: “While the exploited factors are reasonable,
in my experience I also implemented several features and fixed
some bugs that require few hours of work even if they were reported
by just one person who is also already happy about the app. For
instance, a user of the app Happy Birthday Show [5] rated the app
with five stars, and requested to change the color of some buttons.
Such a request required just a couple of hours of work. Thus, I
decided to implement it. Considering the change impact of a new
request or a bug fix might make the prioritization even more useful”.
In addition, Giuseppe highlighted that the prioritization of
the new features should take into account the kind of revision
to perform, i.e., minor or major revision: If a major revision
is planned, I tend to include as many feature requests as possible.
Instead, if I am working on a minor revision, I really look for
the most important feature requests to include (those having the
highest payoff). In this case, the factors considered by CLAP in the

prioritization are certainly valid. Finally, Giuseppe answered
positively (“absolutely yes”) to our last question and he is
willing to use CLAP as a support for the release planning
of his future apps. The only showstopper for the application
of CLAP in Genialapps is that most of the user reviews are
written in languages different from English (e.g., Spanish,
Italian, French). Giuseppe already provide us this feedback
when we interviewed him for our ICSE paper. While it was
our plan to implement this feature, we explain in Section 6
why we did not make CLAP a multi-language tool.
Luciano Cutone, Project manager @ IdeaSoftware [3].
While Luciano considers the user reviews useful for planning
new releases, in his company, in general, user reviews are
not analyzed. The reason is simple. IdeaSoftware usually
develops apps on commission. Thus, instead of considering
user reviews, the developers of IdeaSoftware implement
the features and fix the bugs required by their customers.
Despite this, Luciano claimed that “some of the features and
bug fixes required by the customers of our apps were derived
from the (in)formal analysis of user reviews.”. Luciano answered
“absolutely yes” to the questions related to the completeness
of the review category and “yes” to the factors used to
prioritize the bugs and the new features. However, he also
noticed that the tool could be more usable if a criticality index
is provided for each feature and bug. Specifically, “instead
of having clusters classified as high and low priority, I would like
to see a list of features/bugs to be implemented ranked according
to a criticality index ranging between 0 (low priority) and 1
(high priority). This would provide a better support for release
planning especially when the number of features/bugs classified
as high priority is quite high and I do not have enough resources
to implement all of them.” Finally, Luciano claimed that the
tool seems to be useful “especially when a high number of
reviews needs to be analyzed” and he is willing to use the
tool in his company for analyzing the user reviews of the
apps they plan to develop for the mass market (as opposed
to those they currently implemented on commission for
specific customers). Luciano also suggested to capture more
information on how and when feature requests and bug fixes
clusters have been implemented: “For each cluster I would like
to store the version of the app in which I implemented it. In this
way I can maintain in CLAP the revision history of my apps and
I could automatically generate release notes for each version”.

5 THREATS TO VALIDITY

Threats to construct validity are mainly related to imprecisions
made when building the oracles used in the first three
research questions. As explained in Section 3, the manual
classifications performed for RQ1 and RQ3, as well as the
golden set clusters for RQ2 have been performed by multiple
evaluators independently, and their results discussed to
converge when discrepancies occurred. Two of the authors
analyzed the 3,000 reviews used in the evaluation of the
CLAP categorization step with the goal of assigning each
of them to a category among the seven considered in our
tool. Such a classification could suffer of subjectivity bias. At
least, (i) the manual analysis was performed independently
by the two authors for all 3,000 reviews, and (ii) the authors
performed an open discussion to resolve conflicts arisen for
268 (9%) of the 3,000 reviews.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

TABLE 9: Accuracy achieved by different Machine Learning
techniques

ML Technique Accuracy

Random Forest 86%
Rotation Forest 84%
J48 83%
Simple Cart 83%
SMO 82%
Bayesan Network 81%

The three experts involved in the evaluation reported in
RQ4, were asked to use a version of CLAP with reviews
from the Facebook and Twitter apps imported. This choice
was dictated by (i) the will of using a homogeneous set of
reviews among all three developers; and (ii) the impossibility
of using the reviews of their own apps, since most of these
reviews are in Italian and in Spanish. As shown in Section 6,
our attempt to implement multilingual support into CLAP
failed and thus, we asked participants to analyze reviews of
very well-know apps for which, at least, we are sure they
have a good knowledge of the application domain.

Threats to internal validity concern factors internal to
our study that could have influenced our findings. One
threat is related to the choice of the machine learning
algorithm. As explained in Section 2 we have experimented
various approaches and chosen the one exhibiting the best
performance. We report in Table 9 the comparison among the
six machine learning techniques we experimented: Random
Forest achieves the best accuracy, but other machine learning
techniques, e.g., Rotation Forest, also have good results. We
cannot exclude that machine learners we did not consider
(or different settings of the algorithm) could produce better
accuracy. Similar considerations apply for the clustering
algorithm. The ε parameter of the DBSCAN algorithm has
been chosen using the tuning explained in Section 2.2.

Finally, we are aware that planning the next release
is a very complex process which involve different factors.
Therefore, the prioritization simply based on the factors we
considered in CLAP is only a recommendation that need
to be complemented by factors related to the expertise and
experience of software engineers.

Threats to external validity concern the generalization of
our findings. In the context of RQ1 we chose to select the
3,000 reviews from a high number of apps (705) instead
that from just one or two apps to obtain a more general
model. Indeed, training the machine learner on reviews of
a specific appi would likely result in a model effectively
working on appi’s reviews, but exhibiting low performances
when applied on other apps. To analyze to what extent the
quantity of training data is important, we studied how the
size of the training set influences the classification accuracy.
We saw that using just 60% of the training set is sufficient
to achieve an F-Measure similar to the one achieved using
the complete training set. Still, while we tried to assess our
approach on a relatively large and diversified set of apps, it
is possible that results would not generalize to other apps,
e.g., those developed for other platforms such as iOS or
Windows Phone. Also, as it will be further discussed in
Section 6, the approach adaptation to reviews written in
languages different from English does not exhibit the same
performances we obtained.

6 WHAT DID NOT WORK

Developing and experimenting a tool like CLAP clearly
means facing a number of research challenges not always
easy to overcome. What has been presented in this paper,
both in terms of features implemented in CLAP as well as
in the design choices made while experimenting it, does not
necessarily reflect the plan we had in mind when we started
the CLAP project: It is the result of compromises we had to
accept on our original plan due to ideas and solutions that
did not work as expected.

In this section we discuss solutions and ideas that did
not work in the CLAP project. Our aim is to share as much
as possible of this experience with the research community,
thus also discussing negative results we obtained.

6.1 CLAP as a Multi-language Tool
As previously mentioned, one of the project managers we
interviewed (i.e., Giuseppe) while evaluating CLAP for our
ICSE paper [40] expressed his interest for multi-language
support in our tool. The reason for such a request was
that most of the user reviews his apps receive are written
in languages different from English (the only language
supported by CLAP at date).

We thought that implementing multi-language support
was a great idea, likely doable by relying on automatic
translation tools. Indeed, we concluded the interview with
Giuseppe in our ICSE paper by writing: “We are currently
adapting the tool aiming at making it multi-languages by exploiting
automatic translation tools” [40]. Indeed, such a path has been
previously followed by Hayes et al. in the area of traceability
link recovery between artifacts written in multiple languages
[25].

The first author of this paper started working on this
feature by using the YANDEX15 open source library. The
reason for its choice was mainly opportunistic, since with
YANDEX it is possible to translate for free a good number of
sentences. YANDEX was integrated in CLAP to automatically
translate non-English reviews before any text-preprocessing
was performed on them. This was needed in order to
reuse the CLAP infrastructure aimed at manage negations,
extract n-grams, etc. We built a new oracle to experiment
the accuracy of the CLAP’s reviews categorization feature:
Two of the authors manually analyzed 500 reviews written
in three different languages (i.e., Spanish, Italian, and French)
and classified them into the seven categories considered by
our tool (i.e., functional bug report, suggestion for new feature,
etc.).

When experimenting on these 500 reviews, the catego-
rization accuracy of our tool strongly dropped down, with
an F-Measure value close to 50% (as compared to the 86%
obtained for English reviews). While 50% really sounds like a
“random classifier”, let us note that 50%, with seven possible
categories considered in the classification, is much better
than a random classifier (that would obtain on average an
F-Measure of 14%). However, a tool with such performances
is unlikely to be useful in supporting software developers,
since it fails in classifying ∼50% of the reviews.

We thought that maybe the problem was the automatic
translator we used. However, from our manual inspection

15. https://tech.yandex.com/translate/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

of some reviews, YANDEX seems to work fairly well, by only
introducing minor mistakes. However, these mistakes are
likely responsible for invalidating one of the many steps
behind the CLAP’s text processing (e.g., the removal of
negated terms).

Our take away from this experience is that approaches
strongly relying on natural language analysis like CLAP are
not suitable to integrate automated translators to deal with
multiple languages.

6.2 Cluster ranking vs. high-low priority classification
Another suggestion we got from one of the interviewed
project managers (i.e., Luciano) while working on our ICSE
paper was to implement a prioritization index going from
0 (low priority) to 1 (high priority) instead than a “black
or white” prioritization like the one implemented in CLAP
(i.e., high or low priority). We considered such an option
since we firstly designed the CLAP’s prioritization feature.
However, we were not able to define a sound and reasonable
strategy to assign a so fine-grained prioritization index for
the clusters of reviews of an app. Consequently, we were
not able to define a way to create a training set (with fine-
grained prioritization information) on which CLAP could
have learned the (fine-grained) priority of clusters.

We thought to many solutions, like for example consider-
ing the number of days between the review posting and the
feature/bug fixing implementation as a proxy for the cluster
priority. However, we discarded this solution since temporal
indicators like the number of days needed to implement
a review’s request are influenced by too may factors (e.g.,
the availability of software developers to work on the app,
the complexity of the implementation task, etc.). Thus, we
preferred to rely on a simpler cluster prioritization (high vs
low) allowing to design a more robust way to learn what a
high and a low priority cluster is.

Still, we believe that Luciano’s suggestion is very good
and thus we are further looking into alternative solutions to
this problem.

6.3 On Changes Needed due to Missing Information
In our ICSE paper [40], the cluster prioritization was based
on five predictor features, as compared to the four considered
in this paper. In particular, we decided to remove the feature
related to the average difference of the ratings assigned by users
in the cluster who reviewed older releases of the app (∆ratingu).
A Google Play user can review multiple releases of an app
over time. Clearly, her rating can change over time as a
consequence of her satisfaction in using the different releases.
Given a cluster C containing a set of reviews R referring
to the release ri, we compute the average difference of the
ratings assigned by authors of R with respect to last rating
(if any) they assigned to the releases rx, with x < i. If the
authors of R did not review the app before ri, she is not
considered in the computation of ∆ratingu. If none of the
authors of R evaluated the app in the past, ∆ratingu = 0.

The reason for removing such a feature was the im-
possibility to compute such a difference for new reviews
imported from the Google Play store. Indeed, the information
about the user who posted the review is not present among
the information that the developer can export from Google

Play. While it is possible to find this information in reviews’
datasets available online (like the ones used in this paper),
thus making possible the execution of empirical studies
including such a feature, this is not an option in a real usage
scenario, in which the developer imports the reviews of
her app. Since our goal is to make CLAP a great tool to
work with, we decided to simply discard this feature from
the prioritization model. Despite this removal, the overall
prioritization accuracy was still very high.

7 RELATED WORK

Several works have focused the attention on the mining
of app reviews with the goal of analyzing their topics and
content [20], [26], [27], [31], the correlation between rating,
price, and downloads [23], and the correlation between
reviews and ratings [31]. Also, crowdsourcing mechanisms
have been used outside the context of mobile development
for requirements engineering, for example to suggest product
features for a specific domain by mining product descrip-
tions [18], to identify problematic APIs by mining forum
discussions Zhang and Hou [42], and to summarize positive
and negative aspects described in user reviews [24].

Given the goal of the approach proposed in our paper,
we mainly focus our discussion on approaches aimed at
automatically mining requirements from app reviews.

Galvis and Winbladh [12] extract the main topics in
app store reviews and the sentences representative of those
topics. While such topics could certainly help app developers
in capturing the mood and feelings of their users, the
support provide by CLAP is wider, thanks to the automatic
classification, clustering, and prioritization of reviews.

Iacob and Harrison [26] provided empirical evidence
of the extent users of mobile apps rely on reviews to
describe feature requests, and the topics that represent
the requests. Among 3,279 reviews manually analyzed,
763 (23%) expressed feature requests. Then, linguistic rules
were exploited to defined an approach, coined as MARA
to automatically identify feature requests. Linguistic rules
have also been recently exploited by Panichella et al. [33]
to classify sentences in app reviews into four categories:
Feature Request, Problem Discovery, Information Seeking,
and Information Giving. Di Sorbo et al. [17] introduced
SURF (Summarizer of User Reviews Feedback), a tool able
to generate interactive app reviews summary highlighting
the main requests made by the app’s users. CLAP, dif-
ferently from these techniques, also provides prioritization
functionalities to help the developers in planning the new
release of their app. In our classification, we only consider
reviews’ categories relevant to the subsequent clustering
and prioritization. Gu and Kim [21] presented a review
summarization framework, named SUR-MINER. Such a
framework classifies reviews in five categories: (i) aspect
evaluation, (ii) praises, (iii) function requests, (iv) bug reports
and (v) others. To achieve this goal, the authors propose
to use character n-grams and syntactical features, such as
trunk words and POS tags, instead of information retrieval
techniques commonly used in the literature, such as Vector
Space Model [22] and bag-of-words [29] [28]. The main goal
of the proposed approach is to extract information about
the users’ sentiment towards specific aspects of an app. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

final output is the visualization of such information. SUR-
MINER have a different purpose than CLAP; the first, indeed,
provides detailed information about the sentiment of the
users, while the second automatically prioritizes the reviews
to help developers planning the next release of an app.

Maalej et al. [29] [28] devised an approach to automatically
classify reviews into bug reports, new features requests, user
experiences and text ratings. In their approach, different
elements are used to classify reviews, such as (i) review
metadata, (ii) keyword frequency, (iii) bag of words and (iv)
sentiment analysis. The main difference between such an
approach and the one used in CLAP for categorization is
the kind of categories taken into account. Both Maalej et
al. [28] approach and CLAP are able to classify reviews as
functional bug report and suggestion for new feature, however
CLAP also provides non-functional categories, while the
approach proposed by Maalej et al. [28] is able to identify
user experiences. Furthermore, CLAP provides, in addition,
features for user review clustering and prioritization.

Guzman et al. [22] propose a classification taxonomy for
app reviews. The authors identified 7 categories, i.e., (i) bug
report, (ii) feature strength, (iii) feature shortcoming, (iv) user
request, (v) praise, (vi) complaint, and (vii) usage scenario.
The authors also propose an approach based on Vector Space
Model to automatically categorize reviews. They compared
the accuracy achieved by four machine learning techniques,
i.e., Naive Bayes, SVM, Logistic Regression and Neural
Networks and they found that Neural Networks achieves
the best results. Differently from CLAP, this approach does
not provide clustering and prioritization of reviews.

Ciurumelea et al. [16] recently defined another taxonomy
of 5 high-level and 12 low-level user review categories
and they developed a prototype tool, named URR (User
Request Reference), which has the same overall goal of
CLAP, i.e., improving release planning of mobile apps. URR
classifies reviews in an higher number of categories, with
different levels of detail, in order to return smaller sets
of reviews, which are easier to handle; on the other hand,
CLAP provides a clustering feature in order to reduce the
complexity of analyzing many reviews about the same topic.
In addition, and differently from URR, CLAP provides a
prioritization of user reviews, which is a key element for
release planning.

Chen et al. [15] pioneered the prioritization of user
reviews with AR-MINER, the closest existing approach
to CLAP. AR-MINER automatically filters and ranks in-
formative reviews. Informative reviews are identified by
using a semi supervised learning-based approach exploiting
textual features. Once discriminated informative from non-
informative reviews, AR-MINER groups them into topics and
ranks the groups of reviews by priority. The main differences
between AR-MINER and CLAP are:

1. Fine grained categorization vs. informative/non-informative
reviews. CLAP explicitly indicates to developers the category
to which each review belongs (e.g., “functional bug report”,
“suggestion for new feature”, etc.), while AR-MINER only
discriminates between “informative” and “non-informative”
reviews. Clearly, this different treatment also affects the
grouping step. Indeed, while in AR-MINER a specific topic
(e.g., a topic referred to a specific app’s feature) could indicate
both suggestions on how to improve the feature as well as

bugs reports, in CLAP the review clustering is performed
separately between the different review categories.

2. Recommending next release features/fixes vs. ranking re-
views. CLAP exploits a machine learner to prioritize the
clusters to be implemented in the next app release. This
allows our approach to learn from the actual decisions made
by developers over the change history of their app. On the op-
posite, AR-MINER ranks the importance of reviews based on
a prioritization score, i.e., a weighted sum of “prioritization
factors”. Since CLAP recommends reviews to be addressed
in the next release based on the past history, it would be able
to weigh different features of the prediction model differently
for different apps and in general for different contexts. Finally,
the reviews classification performed in the previous step
permits the use of different prioritization models for different
kinds of change requests.

In summary, CLAP represents, to the best of our knowl-
edge, the first approach and available tool to provide, at
the same time, (i) a fine-grained categorization of mobile
apps’ user reviews, (ii) the clustering of related reviews, and
(iii) the prioritization of suggestions with respect to future
releases.

8 CONCLUSION AND FUTURE WORK

This paper described CLAP, a tool supporting the release
planning activity of mobile apps by mining information from
user reviews. The evaluation of CLAP highlighted its (i) high
accuracy (86%) in categorizing user reviews on the basis of
the contained information, (ii) ability to create meaningful
clusters of related reviews (e.g., those reporting the same
functional bug)—∼80% of MoJoFM, (iii) accuracy (∼83%)
in recommending the changes to implement in sight of the
next app release, and (iv) suitability in industrial contexts,
where we gathered very positive qualitative feedbacks about
CLAP.

Such qualitative feedbacks will drive our future work
agenda, aimed at improving CLAP with novel features and
in particular: (i) the identification of similar apps in the
store with the goal of mining user reviews from competitive
apps; and (ii) the multi-store support. Also, we will continue
our investigation for identifying solutions aimed at making
CLAP a multi-language tool.

REFERENCES

[1] “Credit for 3. https://itunes.apple.com/it/app/
credito-per-tre-soglie-in/id376583617?mt=8.”

[2] “Genial apps website. http://www.genialapps.eu/portale/.”
[3] “Ideasoftware website. http://lnx.space-service.it.”
[4] “Next website. http://www.nextopenspace.it/.”
[5] “Sing happy birthday songs. http://happybirthdayshow.net/en/.”
[6] “Unlikely quotes. https://itunes.apple.com/it/app/

citazioni-improbabili-2.0/id555656654?mt=8.”
[7] “Weka. http://www.cs.waikato.ac.nz/ml/weka/.”
[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.

Addison-Wesley, 1999.
[9] G. Bavota, M. L. Vásquez, C. E. Bernal-Cárdenas, M. Di Penta,

R. Oliveto, and D. Poshyvanyk, “The impact of API change- and
fault-proneness on the user ratings of Android Apps,” IEEE Trans.
Software Eng., vol. 41, no. 4, pp. 384–407, 2015.

[10] A. P. Bradley, “The use of the area under the ROC curve in the
evaluation of machine learning algorithms,” Pattern Recognition,
vol. 30, no. 7, pp. 1145 – 1159, 1997.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

[12] L. V. G. Carreno and K. Winbladh, “Analysis of user comments: An
approach for software requirements evolution,” in 35th International
Conference on Software Engineering (ICSE’13), 2013, pp. 582–591.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, pp. 321–357, 2002.

[14] N. Chen, S. C. Hoi, S. Li, and X. Xiao, “Simapp: A framework for
detecting similar mobile applications by online kernel learning,” in
Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, ser. WSDM ’15. ACM, 2015, pp. 305–314.

[15] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-
miner: Mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014, 2014, pp. 767–778.

[16] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. Gall, “Ana-
lyzing reviews and code of mobile apps for better release planning,”
in 24th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER’17), 2017, p. to appear.

[17] A. Di Sorbo, S. Panichella, C. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in
my apps? summarizing app reviews for recommending software
changes,” in Proceedings of the 24th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, ser. FSE 2016,
2016, p. To appear.

[18] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhordi, “On-demand feature rec-
ommendations derived from mining public product descriptions,”
in 33rd IEEE/ACM International Conference on Software Engineering
(ICSE’11), 2011, pp. 181–190.

[19] M. Ester, H. Kriegel, J. S, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in
2nd International Conference on Knowledge Discovery and Data Mining
(KDD-96), 1996, pp. 226–231.

[20] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app
store,” in 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013, pp. 1276–1284.

[21] X. Gu and S. Kim, “"what parts of your apps are loved by
users?" (t),” in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ser. ASE ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 760–770.
[Online]. Available: http://dx.doi.org/10.1109/ASE.2015.57

[22] E. Guzman, M. El-Haliby, and B. Bruegge, “Ensemble methods
for app review classification: An approach for software evolution
(n),” in Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 2015, pp. 771–776.

[23] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for app stores,” in 9th IEEE Working Conference of Mining
Software Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland.
IEEE, 2012, pp. 108–111.

[24] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2004, pp. 168–177.

[25] J. Huffman Hayes, H. Sultanov, W. Kong, and W. Li, “Software
verification and validation research laboratory (SVVRL) of the
university of kentucky: traceability challenge 2011: language trans-
lation,” in TEFSE’11, Proceedings of the 6th International Workshop on
Traceability in Emerging Forms of Software Engineering, May 23, 2011,
Waikiki, Honolulu, HI, USA, 2011, pp. 50–53.

[26] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps
feature requests from online reviews,” in 10th Working Conference
on Mining Software Repositories (MSR’13), 2013, pp. 41–44.

[27] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile App users complain about? a study on free iOS Apps,” IEEE
Software, no. 2-3, pp. 103–134, 2014.

[28] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On
the automatic classification of app reviews,” Requirements
Engineering, vol. 21, no. 3, pp. 311–331, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00766-016-0251-9

[29] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in Requirements
Engineering Conference (RE), 2015 IEEE 23rd International. IEEE,
2015, pp. 116–125.

[30] G. A. Miller, “WordNet: A lexical database for English,” vol. 38,
no. 11, pp. 39–41, 1995.

[31] D. Pagano and W. Maalej, “User feedback in the appstore: An

empirical study,” in 21st IEEE International Requirements Engineering
Conference, 2013, pp. 125–134.

[32] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di
Penta, D. Poshyvanyk, and A. De Lucia, “User reviews matter!
tracking crowdsourced reviews to support evolution of successful
apps,” in Proceedings of the 31st International Conference on Software
Maintenance and Evolution, ser. ICSME 2015, 2015, p. To appear.

[33] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user
reviews for software maintenance and evolution,” in Proceedings
of the 31st International Conference on Software Maintenance and
Evolution, ser. ICSME 2015, 2015, pp. 281–290.

[34] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[35] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan, “Impact of ad libraries on ratings of android mobile
apps,” IEEE Software, vol. 31, no. 6, pp. 86–92, 2014.

[36] S. Scalabrino, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Replication package. http://dibt.unimol.it/reports/clap.”

[37] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing With
Compositional Vector Grammars,” in ACL, 2013.

[38] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the
characteristics of high-rated apps? a case study on free android
applications,” in Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ser. ICSME ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 301–310.

[39] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness:
a threat to the success of Android apps,” in Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013, 2013, pp.
477–487.

[40] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta,
“Release planning of mobile apps based on user reviews,” in
Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 14–24.

[41] Z. Wen and V. Tzerpos, “An effectiveness measure for software
clustering algorithms,” in Proceedings of the 12th IEEE International
Workshop on Program Comprehension, 2004, pp. 194–203.

[42] Y. Zhang and D. Hou, “Extracting problematic API features from
forum discussions,” in 21st International Conference on Program
Comprehension (ICPC’13), 2013, pp. 141–151.

Simone Scalabrino Simone Scalabrino received
the Master’s Degree in Computer Science from
the University of Salerno in 2015 defending a
thesis on Search Based Software Testing, ad-
vised by Prof. Andrea De Lucia. He received the
Bachelor’s Degree from the University of Molise
in 2013, defending a thesis about source code
readability, advised by Rocco Oliveto and Denys
Poshyvanyk. He is currently a Ph.D. student
at University of Molise. His research interests
include software security, testing and quality.

Gabriele Bavota Gabriele Bavota is an Assis-
tant Professor at the Università della Svizzera
italiana (USI), Switzerland. He received the PhD
degree in computer science from the University
of Salerno, Italy, in 2013. His research interests
include software maintenance, empirical software
engineering, and mining software repository. He
is author of over 70 papers appeared in inter-
national journals, conferences and workshops.
He serves as a Program Co-Chair for ICPC’16,
SCAM’16, and SANER’17. He also serves and

has served as organizing and program committee member of interna-
tional conferences in the field of software engineering, such as ICSE,
ICSME, MSR, ICPC, SANER, SCAM, and others.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

Barbara Russo Barbara Russo is associate
professor at the Faculty of Computer Science
of the Free University of Bozen-Bolzano, Italy
and member of the International Software En-
gineering Research Network. She was visiting
researcher at the Max-Planck Institut fur Math-
ematik in Bonn, Germany and at the University
of Liverpool, United Kingdom. Since 2014, she
is coordinating the research area in Software
and Systems Engineering (SwSE) at the Faculty
Computer Science. Since 2006, she is a member

of ISERN - International Software Engineering Research Network. She
has been program co-chair and PC member of international conferences
and journals (EMSE, TSE, JSS, ESEJ, IS, IST, etc.). She is interested in
modelling and predicting software reliability and data mining in software
engineering for software quality.

Massimiliano Di Penta Massimiliano Di Penta
is an associate professor at the University of
Sannio, Italy. His research interests include soft-
ware maintenance and evolution, mining soft-
ware repositories, empirical software engineering,
search-based software engineering, and service-
centric software engineering. He is an author of
more than 230 papers appeared in international
journals, conferences, and workshops. He serves
and has served in the organizing and program
committees of more than 100 conferences such

as ICSE, FSE, ASE, ICSM, ICPC, GECCO, MSR WCRE, and others.
He has been a general co-chair of various events, including the 10th
IEEE Working Conference on Source Code Analysis and Manipulation
(SCAM 2010), the second International Symposium on Search-Based
Software Engineering (SSBSE 2010), and the 15th Working Conference
on Reverse Engineering (WCRE 2008). Also, he has been a program
chair of events such as the 28th IEEE International Conference on
Software Maintenance (ICSM 2012), the 21st IEEE International Con-
ference on Program Comprehension (ICPC 2013), the ninth and 10th
Working Conference on Mining Software Repository (MSR 2013 and
2012), the 13th and 14th Working Conference on Reverse Engineering
(WCRE 2006 and 2007), the first International Symposium on Search-
Based Software Engineering (SSBSE 2009), and other workshops. He is
currently a member of the steering committee of ICSME, MSR, SSBSE,
and PROMISE. Previously, he has been a steering committee member
of other conferences, including ICPC, SCAM, and WCRE. He is in the
editorial board of the IEEE Transactions on Software Engineering, the
Empirical Software Engineering Journal edited by Springer, and of the
Journal of Software: Evolution and Processes edited by Wiley.

Rocco Oliveto Rocco Oliveto is Associate Pro-
fessor in the Department of Bioscience and Terri-
tory at University of Molise (Italy). He is the Chair
of the Computer Science program and the Direc-
tor of the Laboratory of Computer Science and
Scientific Computation of the University of Molise.
He received the PhD in Computer Science from
University of Salerno (Italy) in 2008. His research
interests include traceability management, in-
formation retrieval, software maintenance and
evolution, search-based software engineering,

and empirical software engineering. He is author of about 100 papers
appeared in international journals, conferences and workshops. He
serves and has served as organizing and program committee member
of international conferences in the field of software engineering. He is a
member of IEEE Computer Society and ACM.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2759112

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

