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Improving Multi-Objective Test Case Selection
by Injecting Diversity in Genetic Algorithms
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Abstract—A way to reduce the cost of regression testing consists of selecting or prioritizing subsets of test cases from a test suite
according to some criteria. Besides greedy algorithms, cost cognizant additional greedy algorithms, multi-objective optimization
algorithms, and Multi-Objective Genetic Algorithms (MOGAs), have also been proposed to tackle this problem. However, previous
studies have shown that there is no clear winner between greedy and MOGAs, and that their combination does not necessarily
produce better results. In this paper we show that the optimality of MOGAs can be significantly improved by diversifying the
solutions (sub-sets of the test suite) generated during the search process. Specifically, we introduce a new MOGA, coined as
DIV-GA (DIversity based Genetic Algorithm), based on the mechanisms of orthogonal design and orthogonal evolution that
increase diversity by injecting new orthogonal individuals during the search process. Results of an empirical study conducted
on eleven programs show that DIV-GA outperforms both greedy algorithms and the traditional MOGAs from the optimality point
of view. Moreover, the solutions (sub-sets of the test suite) provided by DIV-GA are able to detect more faults than the other
algorithms, while keeping the same test execution cost.

Index Terms—Test Case Selection; Regression Testing; Orthogonal Design; Singular Value Decomposition; Genetic Algorithms;
Empirical Studies.
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1 INTRODUCTION

Regression testing consists of re-testing software that
has been modified. Such an activity is required to ver-
ify whether new changes have introduced errors into
unchanged parts, endangering their behaviors [69].
Re-testing the whole software system by executing
all the available test cases might be too expensive
and unfeasible, especially for large systems [25], [55].
Running some test suites can take hours, even days, so
developers cannot exercise the system instantly or in
reasonable time [58]. The problem is clearly amplified
by the growth of the test suites as the system evolves.

Several strategies have been proposed to reduce
the effort of regression testing by selecting a (possi-
bly minimal) subset of test cases from the test suite
with respect to some testing criteria [5], [6], [14],
[24], [29], [37], [48], [50], [52], [54], [57], [71], [73],
or prioritizing their execution with the purpose of
first executing those believed to reveal faults earlier
[20], [21], [44], [66], [71]. In general, solving these
problems requires the tester (i) choosing some testing
criteria to be satisfied, and (ii) using an optimization
technique (e.g., greedy or search-based algorithm) to
select/order the test cases on the basis of the chosen
criteria. For example, widely-used criteria are code
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coverage [6], [21], [29], program modification [52],
[24], [61], execution cost [20], [44], [71], or past fault
information [6], [71], [72].

The problem of test suite optimization has been
also formulated as a combination of multiple—often
contrasting—criteria. Results have highlighted that
the optimization of a test suite is more effective
when using multiple criteria than than when using
individual ones [6], [37], [59], [71], [72]. The simplest
way to combine different criteria is to conflate all the
criteria in a single-objective function to be optimized
[21], [20], [29], [44]. Although such an approach is
widely used when solving multi-objective optimiza-
tion problems, this may produce less optimal results
compared to Pareto-efficient methods. Thus, Yoo and
Harman [71], [72] treated the test suite optimiza-
tion problems using Pareto-efficient multi-objective
genetic algorithms (MOGAs) to deal with multiple
and contrasting objectives. Empirical results indicated
that in some cases MOGAs provide better solutions.
However, there is no a clear winner between single-
objective greedy algorithms and MOGAs [71] and
their combination is not always useful to achieve
better results [72].

We conjecture that a reason for the poor perfor-
mances exhibited by MOGAs in several cases as com-
pared to single-objective algorithms is represented by
the phenomenon of the genetic drift, i.e., a loss of diver-
sity in the Genetic Algorithm (GA) population [34]. In
essence, while search-based optimization techniques
can be useful for regression test selection, usually such
techniques only try to find (near) optimal solution
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with respect to some fitness functions. They do not
guarantee the diversity of the produced solutions.
Looking at multi-objective optimization techniques,
this lack of diversity often leads to stagnation because
MOGAs generate offspring not diversified enough
with respect to their parents, lacking the genetic diver-
sity needed to escape from local regions [65]. In such
a scenario MOGAs can prematurely converge within
some sub-optimal regions [1], [15], [40], [34], [45].

We also conjecture that, even if standard MOGAs
include mechanisms aimed at maintaining diversity
between solutions in the phenotype space (i.e., with
respect to the objective scores of these solutions) [65],
such mechanisms do not adequately prevent genetic
drift in the context of test suite optimization. The
empirical evidence of this conjecture can be derived
by the results of previous empirical studies [41], [71],
[72], which demonstrated that these mechanisms do
not always help in outperforming simple greedy al-
gorithms, because MOGAs converged prematurely to
some sub-optimal solutions.

Some approaches for test suite optimization also at-
tempt to inject diversity in the phenotype space. Hem-
mati et al. [30], [31] exploit test case diversity (based
on UML state machine coverage) as a unique test
criterion to be optimized when selecting test cases.
The idea is that higher diversity between test cases
in the solution provided by the algorithm mirrors
higher coverage. Unlike approaches based on MOGAs
this single-objective approach is not able to provide
tradeoffs between diversity and test execution cost.
To overcome this problem, in a previous study [14]
we suggested adding a diversity-preserving objective
function (measured according to a coverage criterion,
such as code coverage) to typical multi-objective for-
mulations aimed at minimizing the cost and maxi-
mizing the coverage. The additional objective func-
tion promotes diversity between the solutions (sub-
sets of the test suite) of the population of MOGAs,
rather than between the test cases of a solution, like
in the approach by Hemmati et al. [30], [31]. How-
ever, different coverage criteria might require different
diversity-based objective functions, one function for
each coverage criterion. Since the performance of
MOGAs rapidly decreases for an increasing number
of objective functions [39], it is preferable to promote
diversity without adding further objective functions.

Stemming from these considerations, in this paper
we introduce two novel genetic operators to promote
diversity between the candidate solutions (sub-sets
of the test suite) in the genotype space rather than
in the phenotype space. Specifically, we introduce (i)
a generative algorithm to build a diversified initial
population, based on orthogonal design [49], and (ii)
an orthogonal exploration mechanism of the search
space, through Singular Value Decomposition (SVD)
[63], aimed at preserving the diversity during the
evolution of the population [15]. Since these two

mechanisms are defined in the genotype space, they
can be applied for any test suite optimization problem
and independently of the number of test criteria or
objectives to be taken into account. It is worth noting
that, while diversity in the phenotype space naturally
implies diversity in the genotype space, it is not
necessarily true the opposite. However, as our goal
is to avoid genetic drift, injecting diversity in the
genotype space increases the probability of avoiding
being trapped in local optima and then to get more
quickly to global optima. Therefore, our conjecture
is that promoting diversity in the genotype space
through orthogonal exploration of the search space
also results in diversity in the phenotype space.

We conducted an empirical study on eleven real
world open-source programs. The results show that
there is a strong relationship between genotype and
phenotype diversities, since when promoting the
genotype diversity we also improve phenotype diver-
sity. We also find that DIV-GA outperforms both tradi-
tional MOGAs and greedy algorithms. Unlike previ-
ous work on multi-criteria regression test case selec-
tion [14], [71], [72], which compared meta-heuristics
and greedy algorithms only from an optimization
point of view, in this paper we also present a per-
formance metric to evaluate the ability of the selected
test cases to reveal faults (effectiveness) in a multi-
objective paradigm. In particular, we defined a novel
metric to measure the cost-effectiveness of a test suite
that is inspired by the traditional hypervolume metric
widely used for numeric multi-objective problems [4].
The experimental results reveal the superiority of DIV-
GA as compared with traditional MOGAs and greedy
algorithms also in terms of cost-effectiveness.

Summarizing, the contributions of this paper are:

1) a new MOGA, called DIV-GA (DIVersity based
Genetic Algorithm) which integrates orthogonal
evolution and orthogonal design into MOGAs to
solve multi-criteria test case selection problems.
DIV-GA addresses the problem of diversity in
the genotype space, thus, independently of the
number and the kind of test criteria;

2) the evaluation of DIV-GA on a set of open-source
programs from the Siemens suite, the European
Space Agency suite and GNU open-source distri-
bution. The selected programs were also used in
many previous work [9], [14], [37], [56], [57], [67],
[71], [72], [73].

3) the comparison of DIV-GA with previous tech-
niques, namely greedy algorithms and the island
version of NSGA-II [17] (named vNSGA-II), pre-
viously used by Yoo and Harman for test suite
optimization [14], [71], [72], [73]. The comparison
concerns both optimality and effectiveness.

The paper is organized as follows. After a discus-
sion of the related literature (Section 2), Section 3
presents the orthogonal design and the SVD-based
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orthogonal evolution, and describes how to integrate
such operators into the main loop of MOGAs. Sec-
tion 4 describes the design of the empirical study
we conducted to evaluate the benefits of the pro-
posed algorithm. Results are reported and discussed
in Section 5, while Sections 6 and 7 provide additional
empirical analyses and discuss the threats that could
affect the validity of the results of our study, respec-
tively. Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

Approaches aimed at reducing the effort of regression
testing include test suite minimization (or reduction),
test case selection, and test case prioritization. A com-
plete survey of such approaches can be found in
the paper by Yoo and Harman [69]. The following
subsections provide a discussion of the most relevant
related work. In particular, Section 2.1 provides an
overview on traditional approaches to test suite opti-
mization, while Section 2.2 focuses on search-based
approaches. Finally, Section 2.3 describes the main
diversity-preserving mechanisms used in literature.

2.1 Test Suite Optimization: an Overview of Tradi-
tional Approaches
The goal of the test suite minimization (TSM) problem
consists of reducing the size of the test suite by delet-
ing test cases that are redundant with respect to some
coverage criteria [57], such as code coverage, branch
coverage, data flow, dynamic program invariants or
call stacks [29]. Clearly, one issue of the test suite
minimization is that removing some test cases from
the test suite may potentially affect its ability to detect
faults, since a smaller test suite might have a lower
effectiveness [56], [67]. Finding the minimal subset of
a test suite is NP-complete, as it can be reduced to
the minimal hitting set problem in polynomial time.
Hence, several heuristics have been applied to deal
with this problem [9], [29], [50]. Harrold et al. [29]
used the greedy algorithm for the minimal hitting set
problem, while Chen and Lau [9] used it for solving
its dual problem, i.e., the set covering problem. Offutt
et al. [50] used greedy approaches with different test
case ordering criteria instead of the fixed ordering of
the original one. An empirical comparison of greedy
approaches suggested that none of them is able to
outperform the others [50]. Further work based on
greedy approaches considered other coverage criteria
than the code-level structural coverage criteria used
by Harrold et al. [29], Offutt et al. [50], and Chen
et al. [9]. For example, Marré and Bertolino [46] for-
mulated the TSM problem as the problem of finding
a minimal spanning set over the decision-to-decision
graph. McMaster and Memon [48] proposed a test
suite minimization technique based on call-stack cov-
erage. Black et al. [6] considered a bi-criteria approach
that takes into account two testing criteria: (i) code

coverage and (ii) past fault detection history. They
combined the two objectives by applying a weighted-
sum approach, and used Integer Linear Programming
(ILP) optimization to find subsets, then reducing the
multi-objective problem to a single-objective one.

Test Case Prioritization (TCP) is aimed at ordering
test cases to maximize some desired properties [53].
It involves the execution of the test cases in a given
order and terminating the testing process at some
arbitrary point chosen by the decision maker [69]. The
ideal ordering of test cases is the one that maximizes
the actual fault detection rate, but it is only known
after test execution. Hence, the ordering criterion
generally depends on surrogates which are in some
way correlated with the fault detection rate, such as
code coverage [20], [23], [53], interaction coverage
[7], clustering-based coverage [12], and requirement
coverage [60]. According to the chosen surrogate,
the ordering of the test cases is computed using a
greedy algorithm, since the ordering by which the
test cases are selected by the algorithm also mirrors
the ordering to execute them. Greedy algorithms have
also been used to solve a bi-criteria TCP problem by
conflating two objectives (coverage and cost) in only
one function (coverage per unit cost) to be maximized
by applying the weighted-sum approach [20], [44].
Rothermel et al. [53] provided empirical evidence of
the usefulness of the prioritization techniques with
respect to the random ordering by measuring the
ability to early detect faults. A similar analysis was
performed by Do et al. [18] using the Java unit test
framework (JUnit). Elbaum et al. [22] considered fur-
ther testing criteria with different granularity, e.g.,
statement coverage or function coverage.

Test case selection (TCS) focuses on selecting a sub-
set from an initial test suite to test software changes,
i.e., to test whether unmodified parts of a program
still continue to work correctly after changes involv-
ing other parts [54]. The identification of the modified
parts of software can be performed using different
techniques, including Integer Programming [24], sym-
bolic execution [68], data flow analysis [52], depen-
dence graph based techniques [5], and flow graph-
based approaches [54]. The details of the different
selecting approaches differ based on how a specific
technique defines, seeks and identifies changes in the
program under test [69]. Once the test cases covering
the unmodified parts of programs are identified using
a given technique, an optimization algorithm—e.g.,
additional greedy—can be used to select a minimal set
of such test cases according to some testing criteria—
e.g., statement coverage—with the purpose of reduc-
ing the cost of regression testing.

As it has been previously pointed out by Yoo and
Harman [71], [72], test suite minimization, test case se-
lection and test case prioritization are strongly related
to each others. For example, both test suite minimiza-
tion and test case selection involve the selection of
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elements (test cases) from a test suite (starting set) that
best satisfy the testing criteria (e.g., code coverage)
[28]. Test case prioritization is also highly related to
test case selection [61], [71], [72], since an optimal
ordering can be applied to the test cases aiming at
reducing the cost of regression testing. For instance,
Srivastava and Thiagarajan [61] combine prioritiza-
tion and test case selection. Specifically, they first
detect the unmodified parts of software by comparing
the binary code before and after changes. Hence, a
greedy algorithm is used to order test cases but only
according to the coverage of unmodified parts.

2.2 Search-based Test Suite Optimization

Test case selection, test suite minimization, and test
case prioritization can be viewed as multi-objective
problems, were the goal is to select a Pareto-efficient
subset of the test suite, based on multiple test criteria
[71], [72]. Multi-objective algorithms, such as MOGAs,
can then be applied to solve them. A complete analy-
sis of the benefits of this multi-objective reformulation
is also provided by Sampath et al. [59] showing that
the combined (hybrid) test criterion often outper-
formed their constituent individual criteria.

Let Γ = {τ1, . . . , τn} be a test suite and F = {f1,
. . . , fm} a set of objective functions, i.e., the mathemat-
ical descriptions of test criteria to be satisfied during
the selection of test cases. The multi-objective test
suite selection problem considered in this paper can
be defined as follows [71]: selecting a subset Γ′ ⊆ Γ
such that Γ′ is the Pareto-optimal set with respect to
the objective functions in F . The optimality of the
solutions is measured through the concepts of Pareto
optimality and Pareto dominance. It is important to
note that this search-based formulation is referred to
the test case selection problem tackled in this paper,
which does not require test case ordering. A different
formulation taking into account test case ordering—
i.e., using tuples instead of sets—is required for the
test case prioritization problem.

A solution X is said to be Pareto-optimal if and only
if it is non-dominated by any other solution within
the search space, i.e., if and only if no other solution
Y exists which would improve one of the objective
functions, without worsening other objectives. All
the solutions that are not dominated by any other
solution are said to form a Pareto-optimal set, while the
corresponding objective vectors (containing the values
of the objective functions) are said to form a Pareto
frontier. Identifying a Pareto frontier is particularly
useful because the software engineer can use the
frontier to make a well-informed decision that bal-
ances the trade-offs between the different objectives.
For example, the software engineer can choose the
solution with lower execution cost or higher code
coverage on the basis of the resources available for
executing the selected test cases.

Yoo and Harman [71], [72] considered two and three
contrasting test criteria: code coverage and execu-
tion time in the two-objective formulation; then, they
added the fault history information as third criterion
in the three-objective formulation. They also evalu-
ated different optimization algorithms to find Pareto-
optimal sub-sets of the test suite: additional greedy
algorithms and a variant of the multi-objective genetic
algorithm NSGA-II [17]. The additional greedy algo-
rithms were applied by using the traditional weighted
sum approach to conflate all the objectives in only
one function to be optimized: a cost cognizant ver-
sion of the additional greedy algorithm was used
for the two-objective formulation, while the weighted
sum of code coverage per unit of time and fault
coverage per unit of time was considered for the
three-objective formulation. The empirical compari-
son between MOGAs and greedy algorithms did not
reveal a clear winner between them, and in some
cases the MOGAs were not able to outperform the
greedy algorithms [71]. Furthermore, the combination
between these two kinds of algorithms was not al-
ways useful to reach better results [72]. Also, greedy
algorithms—which perform well for single-objective
formulations—are not always Pareto-efficient in the
multi-objective paradigm, motivating the use of meta-
heuristic techniques [71], [72]. Similar considerations
have also been provided by Li et al. [41], who in-
vestigated many meta-heuristic algorithms for the
single-objective formulation, including hill climbing
algorithms, GAs, additional greedy algorithms, and
two-optimal greedy algorithms.

2.3 Avoiding Genetic Drifts through Diversity

In this paper we conjecture that the cause of the
poor performance of MOGAs is represented by the
phenomenon of genetic drift, i.e., a loss of diversity
in the population [34], [65], which can lead towards
a premature convergence within some sub-optimal
region. Indeed, after few generations, a GA tends
to create few groups of solutions (niches), that are
close to each other in the search space, leaving the
rest of the search space unexplored. In general, the
problem of maintaining diversity during the search
process has been recognized as a crucial problem for
ensuring the optimality of GAs, especially for multi-
objective optimization problems [19]. The importance
of diversity is demonstrated by the large amount of
work aimed at addressing such an issue for numerical
problems [15], [17], [33], [42], [74], [75]. A complete
classification of the diversity-preserving mechanisms
proposed in literature to prevent genetic drift when
solving numerical problems can be found in a recent
survey by Črepinšek et al. [65].

According to this survey, diversity mechanisms in
multi-objective optimization try to improve the diver-
sity between solution in the phenotype space (for test
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case selection higher phenotype diversity indicates
that different sub-test suites have different objective
scores) by acting on different components of the GA,
i.e., (i) by modifying the fitness function, (ii) by adding
new similarity-based fitness functions, and (iii) by
promoting diversity during the selection process. For
example, widely used diversity-preserving mecha-
nisms are fitness sharing [26], [34], crowding distance
[43], restricted tournament selection [27], rank scaling
selection [31].

The island variant of the NSGA-II algorithm used
by Yoo and Harman [71], [72] (named vNSGA-II) is of
particular interest in this context because it includes
three different diversity-preserving mechanisms for
promoting phenotype diversity between candidate
solutions (set of selected test cases): crowding dis-
tance, ranking based selection and migration between sub-
populations (islands). In particular, NSGA-II [17] uses
the concept of crowding distance to decide which solu-
tions have to be selected for the next generation (in
this case the diversity is promoted during the selec-
tion process). The crowding distance measures how
far a solution is from the rest of the population [16]—
according to the objective functions—and then giving
to diversified solution a higher probability of survival.
From the test suite optimization point of view, this
means that given a particular coverage criterion, the
crowding distance will promote set of test cases that
are diversified according to the corresponding cover-
age criterion. NSGA-II also uses a second diversity
mechanism since it selects individuals on the basis of
a rank scaling function where the rank is measured
according to the non-dominated sorting algorithm. Fi-
nally, in addition to crowding distance and ranking
based selection, the vNSGA-II algorithm used by Yoo
and Harman [71], [72] uses separated sub-populations
instead of a single population, in order to achieve
wider Pareto frontiers. Periodically, vNSGA-II intro-
duces diversity by exchanging individuals between
sub-populations with the idea that different sub-
populations can maintain different promising regions
of the search space [65]. Previous work by Yoo and
Harman [71], [72], also demonstrated the superiority
of vNSGA-II against the standard NSGA-II. How-
ever, diversity-preserving mechanisms do not always
help NSGA-II and its island version in outperforming
simple greedy algorithms in the context of test case
selection [72]. Thus, further diversity mechanisms are
required to achieve better results.

For numeric problems, another important way to
maintain diversity is to consider diversity as an ex-
plicit further objective function in a multi-objective
paradigm [64], [65], where diversity can be measured
using a specific distance function (e.g., Euclidean dis-
tance) between solutions in the genotype, phenotype
or according to external criterion. In a previous work
[14] we investigated the possibility of enhancing the
two-objective formulation of the test case selection

problem by adding a third objective function pro-
moting diversity in the phenotype space. In partic-
ular, a density function has been added, with the
aim of ensuring diversity between the individuals of
the population according to the statement coverage
criterion. Results indicated the usefulness of diversity
to improve multi-objective GAs.

The approach proposed by Hemmati et al. [30]
also follows this direction, but considers diversity as
the unique objective function to be optimized, where
diversity is measured by using a similarity function
between pairs of test cases, according to a coverage
criterion on a test model [32]. Hemmati et al. also
provided a set of strategies to select test cases such
as Adaptive Random Testing (ART) [8] and single-
objective GAs. Among the different selection strate-
gies, GAs turned out to be the most effective tech-
nique for similarity-based test case selection [30]. Further
studies [31], [32] also confirmed that the diversity
increases the ability to detect faults and evolutionary
algorithms turned out to be most efficient for such an
objective function.

The main disadvantage of these approaches that
consider diversity as an explicit objective func-
tion [14], [30], [31], [32] is that such an objective is
represented by a density/distance function specific
for a given coverage criterion. In a multi-objective
paradigm where multiple coverage criteria can be
used, such approaches require the addition of a di-
versity function for each coverage criterion, thus in-
creasing the number of objective functions to be (near)
optimized. As noted by Köppen et al. [39], the perfor-
mance of MOGAs rapidly decreases for an increasing
number of objective functions. Thus, it is preferable
to promote diversity without adding further objective
functions, while acting on other steps of the evolu-
tion process, such as the selection mechanism or the
generation of new individuals.

This is the main goal of our paper. Specifically, we
suggest to promote diversity between solutions (can-
didate sub-test suites) in the genotype space: higher
genotype diversity indicates that different solutions
select different sets of test cases. Then, we introduce
two genetic operators to this aim: (i) the orthogonal
design [49] to build a diversified initial population
[75], and (ii) an orthogonal exploration mechanism
of the search space [15], through Singular Value De-
composition (SVD) [63]. In particular, the orthogonal
design acts in the initialization of the MOGAs, while
the orthogonal exploration acts during the evolution
by injecting individuals that, according to the SVD,
are diversified enough. Both genetic operators are
independent of he number of testing criteria to be
considered, and they do not require the addition of
further diversity-aware criteria. Details are provided
in Section 3.

Previous studies used a simple binary coding rep-
resentation of solutions for multi-objective test suite
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optimization, where the i-th digit of the binary string
is 1 if the test case τi is included in the solution
and 0 otherwise. Recently, Yoo [70] pointed out that
the widely used binary string representation may not
be ideal when using coverage criteria for test case
selection and, thus, he proposed a novel and different
representation of solutions, called mask-coding. An
empirical study demonstrated that the performances
of MOGAs can depend on the solution representation
and in some case can improve both the optimality and
phenotype diversity between the obtained solutions.
However, as also explained by Yoo [70], in some cases
solutions obtained by the mask-coding are worse than
the ones obtained with traditional binary-coding. In
this paper we focus on the traditional binary-coding
for two main reasons: (i) there is no clear winner be-
tween mask-coding and binary-coding; (ii) the binary
coding is the most used; and (iii) the binary-coding is
also the only one that has been compared with greedy
algorithms.

3 INJECTING DIVERSITY IN MULTI-
OBJECTIVE GENETIC ALGORITHMS: DIV-GA

This section describes how we use DIV-GA (DIversity
based Genetic Algorithm) to solve the multi-objective
test case selection problem. Specifically, we detail how
we inject diversity into the main loop of NSGA-II,
which is the Pareto efficient multi-objective genetic
algorithm designed by Deb et al. [17]. While previous
approaches to multi-objective test case selection [14],
[71], [72] used the island variant of NSGA-II (vNSGA-
II), we based DIV-GA on the standard version NSGA-
II. As explained later in this Section, the orthogonal
exploration mechanism of the search space through
Singular Value Decomposition (SVD) works on a
unique population, which is incompatible with the
sub-populations used by vNSGA-II.

As any other GA, NSGA-II uses multiple solutions
or individuals, also called chromosomes, which are
evolved in parallel to explore different parts of the
search space. As shown in Algorithm 1, NSGA-II
starts with an initial set of random solutions (random
sub-test suites in our case) called a population, ob-
tained by randomly sampling the search space (line 3
of Algorithm 1). The population then evolves through
a series of iterations, called generations to find nearby
better solutions. To produce the next generation,
NSGA-II first creates new individuals, called offspring,
by merging the genes of two individuals in the current
generation using a crossover operator or modifying a
solution using a mutation operator (function MAKE-
NEW-POP [17], at line 5 of Algorithm 1).

A new population is generated using a selection
operator, to select parents and offspring according
to the values of the objective functions. The pro-
cess of selection is performed using the concept of

Algorithm 1: NSGA-II
Input:
A test suite of size N
Population size M
Result: A set of Pareto efficient sub-test suites S

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(N ,M )
4 while not (end condition) do
5 Qt ←− MAKE-NEW-POP(Pt)
6 Rt ←− Pt

⋃
Qt

7 F←− FAST-NONDOMINATED-SORT(Rt)
8 Pt+1 ←− ∅
9 d←− 1

10 while | Pt+1 | + | Fd |6 M do
11 CROWDING-DISTANCE-ASSIGNMENT(Fd)
12 Pt+1 ←− Pt+1

⋃
Fd

13 d←− d+ 1

14 Sort(Fd) //according to the crowding distance
15 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

16 t←− t+ 1

17 S ←− Pt

Pareto optimality, which leads the selection of non-
dominated solutions in the current population. The
crowding distance is used in order to make a decision
about which individuals to select: the individuals
that are far away from the rest of the population
have higher probability to be selected. Furthermore,
NSGA-II uses the fast non-dominated sorting algorithm
to preserve in the next generation the individuals
forming the current Pareto frontier (elitism). After
some generations, the algorithm converges to “stable”
solutions, i.e., the Pareto-optimal set of the problem.

In line 7, the function FAST-NON-DOMINATED-
SORT [17] assigns the non-dominated ranks to in-
dividuals parents and offsprings. The loop between
lines 10 and 14 adds as many individuals as pos-
sible to the next generation, according to their
non-dominance ranks, until reaching the population
size. Specifically, the algorithm first selects the non-
dominated solutions from the first non-dominated
front (F1); if the number of selected solutions is lower
than the population size M , the loop selects the non-
dominated solutions from the second non-dominated
front (F2), and so on. The loop will stop when adding
the solutions of the current non-dominated front Fd
would exceed the population size M . In case the
number of selected solutions at the end of the loop
is lower than the population size M , the algorithm
selects the remaining solutions from the current non-
dominated front Fd according to the descending order
of crowding distance in lines 14–15.

The next sections describe in detail the two diver-
sity mechanisms proposed in this paper. Specifically,
Section 3.1 describes how to generate diversified ini-
tial populations [74] using the orthogonal (or exper-
imental) design [49], while Section 3.2 describes the
concept of evolution directions, and how to estimate
such directions to promote diversity [15]. Finally, Sec-
tion 3.3 explains how to integrate these techniques
into the main loop of NSGA-II.
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3.1 Diversity in the Initial Population

The function used to generate an initial population
plays an important role on the performance of GAs
[42] since it performs an initial sampling of the search
space. A well-distributed and well-diversified initial
population makes the exploration more effective and
favors GA convergence toward global optima [42].
Instead, a poorly diversified initial population can
compromise the convergence speed and the optimal-
ity of the search space. This issue becomes particularly
critical for problems where the length of the chro-
mosome (number of test cases in our case) is larger
than the size of the population [10]. This is especially
true for the test case selection problem, where search-
ing the optimal subset—according to multiple testing
criteria—of a test suite of size n requires the analysis
of 2n possible solutions.

According to Zhang et al. [74], statistical methods
such as orthogonal design can be used to improve
the optimality and the convergence speed of GAs.
A generic solution of the test suite minimization
problem is an array of binary digits X = {x1, . . . , xn}
where xi is equal to 1 if the i-th test case is se-
lected, 0 otherwise. Then, each element xi can be
considered as a two-level factor1 which affects the
outcome of the fitness function. Hence, the problem
of generating a well-distributed initial population for
GAs is equivalent to the problem of finding a (small)
representative sample of all the possible combinations
between factors (test cases) for a given experiment.

Because of such an equivalence, we propose to use
the orthogonal arrays methodology designed by Mont-
gomery et al. [49] for orthogonal design, to generate
an initial population for GAs. Several numeric algo-
rithms can be used to generate the orthogonal arrays,
such as the row-exchange algorithm or the coordinate-
exchange algorithm [49]. In this paper, we use the
Hadamard matrices to build the orthogonal arrays,
since such a methodology is particularly efficient for
generating two-level orthogonal arrays [62], i.e. the
ones required for binary problems such as the test case
selection problem. By definition, a Hadamard matrix
H of order n is an n×n matrix with the property that:

H ×HT = HT ×H = nI (1)

with all elements either equal to +1 or −1, where I is
the identity matrix. The meaning of this property is
that all the row vectors in H are mutually orthogonal
(i.e., they have inner product equals to 0) as well as
all the column vectors in H . This also implies that
we can select any subset of the rows (or of columns)
and still we have a set of mutually orthogonal vectors.
Moreover, all the row and column vectors contain the

1. A two-level factor is a factor assuming only two possible
values [49]. In our case xi ∈ {0, 1}.

Algorithm 2: ORTHOGONAL-POPULATION
Input:
The size of the test suite n; The size of the initial population m;
Result: An initial population P0 of m individuals.

1 begin
2 N ←− max {m,n}
3 Generate a Hadamard matrix Hk of size k = d(N + 1)/4e × 4,

where d(N + 1)/4e denotes the smallest integer number greater
or equal to (N + 1)/4

4 Sort the rows of Hk in ascending order
5 Delete the first column from Hk

6 Select the first m rows and the first n columns from Hk to obtain
a new matrix L of size m× n

7 Convert L in a binary matrix Lm(2n)
8 P0 ←− Lm(2n)

same number of +1 and −1 elements with the excep-
tion of the first column and the first row. An example
of Hadamard matrix of size 4 is the following:

H4 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


There is more than one technique available to build

Hadamard matrices. However, the simplest (and also
most powerful) method to build larger Hadamard
matrices consists of using the following properties: if
H is a Hadamard matrix of order n, then the following
matrix is a Hadamard matrix of size 2n:

H2n =

(
H H
H −H

)
(2)

It has been shown that a Hadamard matrix always
has an order n which is a multiple of 4 [62]. In the
context of this paper, we are interested in Hadamard
matrices because their row vectors (or equivalently
their column vectors) represent a special cases of
orthogonal arrays (with an order which must be a
multiple of 4) with two-level factors {−1; +1}. In
order to generate orthogonal arrays of any size/order
and with values in {0; 1}, we need to manage the
Hadamard matrices.

Let N be the size of the test suite and let M
be the number of individuals to be generated, we
generate the orthogonal arrays (or equivalently the
initial population for GAs) using the steps reported
in Algorithm 2. Steps at lines 3 and 4 have been
implemented using the hadamard and the sortrows
routines, respectively, available in MATLAB [47]. In
line 5, we remove the first column because it is the
unique one which contains only +1 elements, thus,
if we maintain this column then the first test cases
will be selected by all the individuals in the initial
population (and it will be the only test case with this
peculiarity). Since the obtained H matrix will contains
k ≥ m rows and k−1 ≥ n columns, we select the first
m rows and the first n column (line 6) in order to
have the desired m × n matrix, whose m rows are
orthogonal arrays of length n. It is important to note
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that we could select any subset of rows or columns
in H but the selected ones still need to be mutually
orthogonal vectors. Finally, line 7 converts the matrix
L with values ∈ {−1, 1} into a new matrix Lm(2n)
with values ∈ {0, 1}.

We propose to use the row vectors of such a matrix
Lm(2n) as individuals of an initial population for GAs,
where its generic entry Lj,i is equal to 1 if the ith

test case is selected by the jth individual, 0 otherwise
(step 6 in Algorithm 2). According to Zhu et al. [75],
all the properties of the orthogonal arrays make them
very suitable to be used as initial population for GAs,
since they guarantee the minimal mutual information
between individuals and a scattered uniformly sam-
pling of the search space.

Note that the orthogonal arrays used by Zhu et al.
[75] have more than two-level factors and have been
used to solve real-coded numerical problems, while
we use two-level orthogonal arrays since test case
selection is a multi-objective problem whose solutions
are binary arrays. Moreover, in this paper we suggest
to use a generative approach to build the orthogonal
arrays based on Hadamard matrices, which is more
efficient for binary populations [62] than the iterative
algorithm proposed by Zhu et al. [75].

3.2 Diversity during Population Evolution

Even if the initial population is well-diversified,
during the evolution process—i.e., across different
generations—the diversity between individuals can
be compromised with the risk to explore the same
search regions while other parts of the search space
are left unexplored (premature convergence) [1], [34],
[40], [45]. The idea of GAs is that a population tends
to evolve toward regions of the search space with
better fitness because at each generation a selection
operator is used to select the (best) individuals that
have to survive in the next generation. For multi-
objective problems the selection operator selects for
reproduction the individuals that are non-dominated
by any other solution in the current population, i.e.
individuals with the best compromise between the
contrasting objectives (which represents an approx-
imation of the optimal Pareto set). As new genera-
tions are produced, the best individuals will tend to
converge towards some locally- or globally-optimal
Pareto regions. However, even if the evolution process
is based on the randomness nature of mutation and
crossover operators, the population can be trapped in
some locally-optimal regions (genetic drift or premature
convergence [10]).

Recently, De Lucia et al. [15] observed that it is
possible to identify where the best individuals of the
population are evolving over two consecutive gen-
erations. Such movements, called evolution directions,
are estimated through Singular Value Decomposition
(SVD) [63], and are used to inject diversity in the

Algorithm 3: INJECT-DIVERSITY
Input:
A population Pt

A population Pt+k

Result: A new population P∗t+k

1 begin
2 P ′t ←− 50% of best individuals of Pt

3 P ′t+k ←− 50% of best individuals of Pt+k

4 [Ut,Σt, Vt]←− svd(P ′t )
5 [Ut+k,Σt+k, Vt+k]←− svd(P ′t+k)

6 V ←− Vt+k − Vt //Evolution directions
7 Σ←− Σt+k − Σt //Shifting operator
8 //Generate orthogonal evolution directions
9 V

o ←− ORTHOGONAL-DIRECTION(V )
10 //Generate new orthogonal individuals

11 P o ←− Ut+k ·
(

Σt+k + Σ
)
·
(
Vt+k + V

o
)T

12 Convert the elements in P o in binary values
13 P∗ ←− P ′t+k ∪ P

o

population in order to push its evolution toward
unexplored/orthogonal regions. This is achieved by
replacing the worst part of the population with new
individuals that are orthogonal to the best part of the
population. This technique has been applied to real-
coded numerical problems [15] and also for evolu-
tionary test data generation [38], showing the bene-
fits of SVD-based diversity on the effectiveness and
efficiency of GAs.

In this paper we propose to adapt the approach
proposed by De Lucia et al. [15] to the test case
selection problem. Specifically, the approach by De
Lucia et al. [15] has been adapted at three main points:

1) encoding of solution (binary-coded chromosomes
instead of real-coded ones);

2) selection of best individuals which is performed
using the concept of Pareto optimality (while in
the work by De Lucia et al. [15] and by Kifetew
et al. [38] the best individuals were selected ac-
cording to the definition of fittest individuals in
single-objective paradigm); and

3) once we have generated new individual through
SVD, we reconvert the obtained real-coded vec-
tors in binary vectors (this step was not required
in the previous work by De Lucia et al. [15] and
by Kifetew et al. [38]).

More details about these customizations for the test
case selection problem are provided in the following
when describing the main steps of the proposed algo-
rithm.

The steps needed to inject diversity during the evo-
lution of the population are reported in Algorithm 3.
The algorithm takes as input two populations Pt and
Pt+k obtained by a multi-objective genetic algorithm
at generations t and t + k and produce as output a
new population P ∗ obtained by injecting diversity in
population Pt+k. Each population can be considered
as m×n matrix where n is the number of test cases, m
is the number of individuals, while the generic entry
pi,j is equal to 1 if the j-th test case is selected by the
i-th individual.
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Algorithm 4: ORTHOGONAL-DIRECTION
Input:
A m× n matrix V ;
Result: A matrix V o;

1 begin
2 foreach Column i ∈ {1, . . . , n} do
3 −→v o

i ←− reverse-order(−→v i)
4 η ←− random number ranging in [0; 1]
5 if η > 0.5 then
6 multiply by -1 the first bm/2c elements in −→v o

i
7 else
8 multiply by -1 the last bm/2c elements in −→v o

i

9 if m mod 2 6= 0 then
10 randomly set to zero one of dm/2e unmodified

element in −→v o
i

The first two steps of the algorithm (at lines 2 and 3)
select 50% of the best individuals from the two input
populations, P

′

t and P ′t+k respectively. The selection
of the best 50% of individuals is performed using the
fast non-dominated sorting algorithm and the concept
of crowding distance [17], i.e., the traditional operators
used by NSGA-II to assign the ranks (levels of opti-
mality) to all the individuals of a given population.

Then, SVD is applied in steps (lines 4 and 5)
to decompose each of these two sub-populations as
P ′ =

(
U · Σ · V T

)
for identifying and ordering the

dimensions (axes) along which the individuals ex-
hibit most of the variation. The column vectors of
V denote the main directions along which the in-
dividuals are distributed in the search space, while
the diagonal elements of Σ measure the importance of
each main direction vj for the population distribution.
By definition such a decomposition also orders the
vectors V = {v1, v2, . . . , vn} in descending order of
importance. Thus, the individuals exhibit the first
largest variation along the direction v1, the second
largest variation along the direction v2, and so on.
Consequently, the diagonal elements σi,i in Σ are also
ordered in descending order of magnitude.

Clearly, two populations obtained in two different
generations have different SVD factorizations, because
they are distributed differently in the search space.
Since SVD allows us to capture such distributions,
a simple way to estimate where the non-dominated
solutions are evolving after k generations consists
of comparing the two corresponding decompositions
{Σt, Vt} at generation t and {Σt+k, Vt+k} at generation
t+ k. Specifically, V ←− Vt+k − Vt computed at line 6
estimates the directions along which the population is
evolving (evolution directions) and Σ ←− Σt+k − Σt
computed at line 7 measures the magnitude of its
evolution.

Starting from these matrices, it is possible to gener-
ate a new set of individuals P o as reported at line 11
with orthogonal directions as compared to directions
of the current population. The matrix V

o
computed

at line 9 is a matrix whose column vectors are unit
and orthogonal with respect to column vectors of V ,

Pt

x2

x1

Evolution 
Direction

Orthogonal 
DirectionPt+k

Ut+k   · (Σt+k +Σ) · (Vt+k +Vo)T

Ut+k   · (Σt+k +Σ) · (Vt+k +V)
T

Fig. 1: SVD-based GA: Graphical interpretation of
orthogonal diversification.

i.e., voi is orthogonal to vi for i = 1 . . . n. Since the
number of all possible orthogonal column vectors is
infinite, a good choice would be to randomly generate
such vectors. We have chosen the simple method
shown in Algorithm 4 [38]. Such an algorithm creates
orthogonal vectors in a simple way. Given a vector
−→v i, its orthogonal vector can be computed by (i)
creating a new vector −→v oi with the same elements
in −→v i but in reverse order (line 3 of Algorithm 4),
and (ii) randomly multiplying the first or last 50% of
its elements by -1 (lines 4–8 of Algorithm 4). If the
number of elements in −→v oi is odd, then we randomly
set to zero one of its unmodified element in order
to ensure the orthogonality with −→v i (lines 9–10 of
Algorithm 4).

The factor
(
Σt+k + Σ

)
in line 11 of Algorithm 3

is the shifting operator that allows to generate new
individuals that are Σ-shifted in the search space,
while the factor (Vt+k + V

o
) is the orthogonal operator

which creates the new individuals that are rotated
in the search space. Since the rotation is performed
using orthogonal vectors, the new individuals will
explore orthogonal regions not considered during the
last k generations [15]. Figure 1 shows the graphi-
cal interpretation of the two factors

(
Σt+k + Σ

)
and

(Vt+k + V
o
) for two populations at generations t and

t + k. We can see how (Σt+k + Σ) allows to generate
individuals which are shifted in the search space,
while (Vt+k +Orth(V )) creates new individuals with
orthogonal evolution directions, i.e., new individuals
which explore orthogonal and unexplored regions of
the search space.

The remaining issue to solve is that the orthogo-
nal individuals generated using SVD are not binary
vectors, as the entries in P o assume real values. To
address this issue, in line 12 of Algorithm 3 we
re-convert the entries in P o into binary values by
replacing elements lower than 0.5 with 0 and elements
higher or equal to 0.5 with 1.

Finally, the new population P ∗ is obtained by re-
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Algorithm 5: DIV-GA
Input:
A test suite of size N
Population size M
SVD interval k

1 begin
2 t←− 0
3 Pt ←− ORTHOGONAL-POPULATION(N ,M )
4 old←− t
5 while not (stop condition) do
6 //main loop of NSGA-II
7 Qt ←− MAKE-NEW-POP(Pt)
8 Rt ←− Pt

⋃
Qt

9 F←− FAST-NONDOMINATED-SORT(Rt)
10 Pt+1 ←− ∅
11 d←− 1
12 while | Pt+1 | + | Fd |6 M do
13 CROWDING-DISTANCE-ASSIGNMENT(Fd)
14 Pt+1 ←− Pt+1

⋃
Fd

15 i←− i+ 1

16 Sort(Fd) //according to the crowding distance
17 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

18 t←− t+ 1
19 if t mod k = 0 then
20 Pt ←− INJECT-DIVERSITY(Pold, Pt)
21 old←− t

22 S ←− Pt

placing 50% of worst individuals in Pt+k with the
orthogonal individuals in P o, as shown at line 13 of
Algorithm 3.

It is important to point out that this SVD-based
diversity-preserving mechanism can be applied with
any kind and number of objective criteria, since it
works on the sets of solutions without modifying any
evolutionary genetic operator or fitness function, as
fitness sharing GA does [14].

3.3 Putting It Together

Algorithm 5 reports the novel DIV-GA, the variant
of NSGA-II where we have integrated mechanisms to
promote diversity in the initial population and during
the evolution process.

First and foremost, in line 3 a uniformly distributed
population P0 is created through the orthogonal de-
sign method, as described in Section 3.1. Then, the
main loop of the DIV-GA algorithm first includes k
executions of the NSGA-II algorithm, i.e., the loop be-
tween lines 6–18. During these k generations the usual
selection, recombination, and mutation operators are
used to create offsprings and the new population
is created by selecting the best solutions between
parents and offsprings. Then, every k generations we
apply our SVD-based preserving technique on the
past and current populations Pold and Pt respectively
(lines 19-21).

Finally, the DIV-GA algorithm takes as an input the
parameter k, which represents the temporal distance
(in terms of number of iterations of the GA) between
the two populations on which SVD has to be com-
puted. As shown by De Lucia et al. [15], the injection
of orthogonal individuals through SVD drastically

reduces the number of iterations and the total con-
vergence time of a GA, despite the cost of computing
SVD. In other words, the lower the value of k, the
higher the convergence speed of the GA. Therefore,
in principle, SVD could be applied at each iteration
(k = 1). However, in case the best individuals of
two subsequent populations do not change, the SVD
might have no effect and then the cost of computing
SVD is not compensated by the benefits of injecting
orthogonal individuals. In other words, the higher
the value of k, the higher the probability that the
best individuals of the two populations differ and
then the higher the probability that SVD has effect
on escaping from local optima. A systematic study
on identifying the effects of k on the performances of
a GA has not been done yet and is out of the scope
of this paper. However, previous studies indicate that
k = 2 provides generally good results both in real-
coded numerical problems [15] and for evolutionary
test data generation [38]. Thus, in this paper we also
set k = 2.

4 EMPIRICAL EVALUATION
The goal of this study is to evaluate DIV-GA, with
the purpose of solving the test case selection problem.
The quality focus of the study is represented in terms
of three—possibly conflicting—objectives which are
pursued when performing test case selection, namely
increased code coverage capability, decreased execu-
tion cost, and increased past fault coverage.

The context of the study consists of eleven
open-source and industrial programs available from
the Software-artifact Infrastructure Repository (SIR)
[36]: space, an interpreter for Array Descrip-
tion Language, developed by European Space
Agency; six GNU open-source programs bash,
flex, grep, gzip, sed and vim; four pro-
grams of the Siemens suite, namely printtokens,
printtokens2, schedule, and schedule2.

Table 1 reports the characteristics of the eleven
programs, and specifically their size (in terms of LOC)
and the size of the available test suites (in terms of
number of test cases). As it can be noticed, the size of
the selected programs ranges between 374 and 122,169
LOC, while the number of test cases between 215
and 13,583. The selection of these programs was not
random. They have been used in previous work on
regression testing and especially when experimenting
techniques for the selection and prioritization of test
suites [9], [14], [37], [56], [57], [67], [71], [72], [73],
hence allowing us—wherever possible—to compare
results.

In this study, we compare the performance of DIV-
GA with two alternative test case selection techniques:
(i) one based on additional greedy algorithm used
by Rothermel et al. [53], and (ii) one based on the
island version of NSGA-II (vNSGA-II) used by Yoo
and Harman [71], [72].
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TABLE 1: Programs used in the study.

Program LOC # of Test Cases Description
bash 59,846 1,200 Shell language interpreter
flex 10,459 567 Fast lexical analyser
grep 10,068 808 Regular expression utility
gzip 5,680 215 Data compression program
printtokens 726 4,130 Lexical analyzer
printtokens2 520 4,115 Lexical analyzer
schedule 412 2,650 Priority scheduler
schedule2 374 2,710 Priority scheduler
sed 14,427 360 Non-interactive text editor
space 6,199 13,583 European Space Agency program
vim 122,169 975 Improved vi editor

4.1 Research Questions
The study aims to provide empirical evidence to
answer the following research questions:
• RQ1: To what extent does DIV-GA produce near

optimal solutions, compared to alternative test case
selection techniques? This research question aims
at evaluating to what extent the proposed DIV-
GA algorithm is able to produce a larger number
of near optimal solutions, if compared to alterna-
tive, state-of-the-art test case selection techniques,
namely additional greedy and vNSGA-II. Note
that, due to the NP-complete nature of the test
case selection problem, there is no solver able
to find the exact optimal solutions with efficient
computational cost, and all the experimented
algorithms can provide only near-optimal solu-
tions.

• RQ2: Which is the cost-effectiveness of DIV-GA,
compared to alternative test case selection techniques?
A common issue of test case selection techniques
is that the reduced test suites might reveal less
faults with respect to the original test suite be-
cause they contain a lower number of test cases to
be executed against the software under test. With
this second research question we are interested in
understanding how many faults can be detected
using the sub-test suites obtained by DIV-GA,
in comparison with alternative techniques. This
reflects the software engineer’s needs to reduce
a test suite without compromising the ability to
detect source code faults.

The following subsections describe all the experi-
mented algorithms and the evaluation mechanisms
performed to answer the aforementioned research
questions.

4.2 Test Selection Objectives
In this paper we consider three different test case
selection criteria, used in previous work [6], [72], [73],
namely: (i) statement coverage, (ii) execution cost of
test cases, and (iii) past fault coverage.

Statement coverage criterion. We measure state-
ment coverage using the gcov tool part of the GNU
C compiler (gcc). Specifically, we measure statement
coverage, as also done by Yoo et al. [71], [72], [73]:

cov(X) =
1

m

m∑
i=1

φi (3)

where m is the total number of code statements to
be covered and φi is equal to 1 if the ith statement
is covered by at least one selected test case in X , 0
otherwise.

Execution cost criterion. As for the execution cost,
in principle we could just measure the test case ex-
ecution time. However, performing such a measure
is not an easy task, because the measure depends
on several external factors such as different hard-
ware, application software, operating system, etc. In
this paper we address this issue by counting the
number of executed elementary instructions in the
code, instead of measuring the actual execution time.
This is consistent with what was done in previous
work on multi-objective test case selection [71], [72].
We use the gcov tool to measure the execution fre-
quency of every basic block (sequence of statements)
composing each source code line. According to the
tool documentation, a basic block is a linear section
of code which has no branches and with only one
entry point and only one exit. We considered the
execution frequency of a basic block rather than the
execution frequency of source code lines since a single
source code line might contain multiple branches and
calls (e.g., the for statement counts as three basic
blocks, i.e., the initialization, the condition, and the
increment). Therefore, the computational cost of each
test case is approximated by summing the execution
frequencies of all the executed basic blocks. Starting
from these execution frequencies, the execution cost
criterion is defined as follows:

cost(X) =

n∑
i=1

xi · cost(τi) (4)

where cost(τi) represents the execution frequency of
the ith test case.

Past fault coverage criterion. As for the past fault
coverage criterion, we consider the versions of the
programs with seeded faults available in the SIR
repository [36]. SIR also specifies whether or not each
test case is able to reveal these faults. Such informa-
tion can be used to assign a past fault coverage value
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to each test case subset, computed as the number of
known past faults that this subset is able to reveal in
the previous version. Specifically, starting from this
history information, the past fault coverage (fault)
achieved by a solution X can be measured as follows:

fault(X) =
1

h

h∑
i=1

ϕi (5)

where h represents the number of test cases, while ϕi
is equal to 1 if the ith past fault is covered by at least
one selected test case in X , 0 otherwise.

Using the three test case selection criteria described
above, we examine two and three-objectives formula-
tions of the test case selection problem. In particular,
we consider the two-objective problem taking into
account code coverage and execution cost as contrast-
ing goals, similarly to what done in previous work
[14], [71], [72]. Formally, the two-objective test case
selection problem can be defined as follows:

Problem 1. Two-objective Test Case Selection Prob-
lem: finding a set of optimal solutions X which maximizes
the code coverage and minimizes the execution cost:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(τi)

For the three-objective formulation, we add past
fault detection history as a further objective, as also
done in previous work [6], [71], [72]. The three-
objective test case selection problem can be defined
as follows:

Problem 2. Three-objective Test Case Selection Prob-
lem: finding a set of optimal solutions X which maximizes
the code coverage, minimizes the execution cost, and max-
imizes the past fault coverage:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(τi)

max fault(X) =
1

h

h∑
i=1

ϕi

Note that, besides the test case selection criteria
defined above, it is possible to formulate other criteria,
e.g., based on data-flow coverage or even functional
requirements just providing a clear mapping between
tests and criterion-based requirements. However, it
is important to highlight that the goal of this work
is not to analyze which set of test criteria is the
most effective for regression testing. The formulations
are used to illustrate how the diversity-preserving
technique proposed in this paper can be applied to
any number and kind of testing criteria to be satisfied.

Algorithm 6: Cost cognizant (or two-objective)
Additional Greedy.

Data:
A test suite T = {t1, . . . , tn}
A set of program elements P covered by T
Result: A set of sub-test suites S.

1 begin
2 C ←− ∅ // covered elements
3 S ←− ∅ // selected test cases
4 while C ⊂ P do
5 for each ti ∈ T do

6 fi =
| cov(ti)− C |

cost(ti)

7 tj ←− test case in T with minimum fj
8 S ←− S

⋃
{tj} // add tj to solution

9 C ←− C
⋃
cov(tj) // add cov(tj) to covered elements

10 T ←− T − {tj}
11 Add S to the Pareto set

Algorithm 7: Three-objectives Additional Greedy.
Data:
A test suite T = {t1, . . . , tn}
A set of program elements P covered by T
Result: A set of sub-test suites S.

1 begin
2 C ←− ∅ // covered elements
3 F ←− ∅ // covered past faults
4 S ←− ∅ // selected test cases
5 while C ⊂ P do
6 for each ti ∈ T do

7 fi =
0.5× | cov(ti)− C | +0.5× | fault(ti)− F |

cost(ti)

8 tj ←− test case in T with minimum fj
9 S ←− S

⋃
{tj} // add tj to solution

10 C ←− C
⋃
cov(tj) // add cov(tj) to covered elements

11 F ←− F
⋃
fault(tj) // add fault(tj) to covered faults

12 T ←− T − {tj}
13 Add S to the Pareto set

4.3 Evaluated Algorithms

For the two-objective formulation of the test case
selection problem, we compare the following opti-
mization algorithms:
• The two-objective DIV-GA proposed in this paper

(see Section 3) which uses SVD and orthogonal
design to promote diversity between the selected
test cases.

• The two-objective additional greedy algorithm used
by Yoo and Harman [71] and by Rothermel et al.
[53], which considers at same time both coverage
and cost by maximizing the coverage per unit
of time of the selected test cases (cost cognizant
additional greedy), as reported in Algorithm 6.
Specifically, such an algorithm starts with an
empty set of test cases (line 3 of Algorithm 6)
and iteratively picks the test case having the
best additional coverage per unit cost (lines 5–
6 of Algorithm 6). The process ends when the
maximum code coverage is reached.

• The vNSGA-II algorithm, used by Yoo and Har-
man [71] for finding a set of non-dominated solu-
tions that maximizes coverage while minimizing
the cost of the selected test cases.
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Similarly, for what concerns the three-objective for-
mulation of the test case selection problem, we com-
pare the following optimization algorithms:

• The three-objective DIV-GA proposed in this pa-
per (see Section 3).

• The three-objective additional greedy algorithm
used by Yoo and Harman [71], which conflates
code coverage, execution cost and past coverage
in one objective function to be minimized, as
highlighted in Algorithm 7. Such an algorithm
is similar to Algorithm 6 with the only difference
that at each iteration it picks the test case having
the best additional code and past faults coverage
per unit cost (lines 5-6 of Algorithm 7).

• The vNSGA-II algorithm used by Yoo and Har-
man [71] for finding a set of non-dominated
solutions that maximizes code coverage and past
fault coverage, while minimizing the cost of the
selected test cases.

It is important to highlight that vNSGA-II—
that we used as baseline for assessing the perfor-
mance of DIV-GA—includes three different diversity-
preserving mechanisms for promoting phenotype di-
versity between candidate solutions (set of selected
test cases): distance crowding, ranking based selection
and migration between sub-populations (islands). The
proposed DIV-GA is based on the standard NSGA-
II, so it also includes distance crowding and ranking
based selection. However, DIV-GA also integrates the
two novel diversity-preserving techniques introduced
in this paper, which promotes diversity in the genotype
space.

All the algorithms have been implemented us-
ing MATLAB Global Optimization Toolbox [47] (release
R2011b). In particular, we use the gamultiobj routine
which implements both the standard version of the
NSGA-II algorithm and its island version (vNSGA-
II). The DIV-GA algorithm is also implemented by
customizing the gamultiobj routine, while the gener-
ation of the initial population of DIV-GA based on
orthogonal design is performed using the rowexch
routine, which implements the row-exchange algorithm
to generate m orthogonal arrays (m is the size of
the initial population) of n factors (test cases) with
2-level ({0, 1}). For both vNSGA-II and DIV-GA we
use the same parameters typically used for numerical
problems [16]. Specifically:

• Population size: since the search space of the test
case selection problem is larger for programs with
a larger test suite, we use different population
sizes according to the size of the test suites to be
optimized, as shown in Table 2.

• Initial population: for vNSGA-II the initial pop-
ulation is randomly generated within the solution
space. For DIV-GA, the initial population is com-
posed of the orthogonal arrays as explained in
section 3.1.

TABLE 2: Configurations of vNSGA-II and DIV-GA
for the programs used in the study.

System Population size # of generations
bash 400 2,000
flex 400 1,000
grep 200 1,000
gzip 300 500
printtokens 200 500
printtokens2 200 500
schedule 200 500
schedule2 200 500
sed 300 1,000
space 400 1,000
vim 400 2,000

• Number of generations: the maximum number
of generations varies according to the size of
the test suites to be optimized. The values are
reported in Table 2.

• Crossover function: we use a multi-point
crossover, called scattered crossover with probabil-
ity pc = 0.50.

• Mutation function: we use a bit-flip mutation
function with probability pm = 1/n, where n is
the size of the test suite (or equivalently n is the
size of the chromosomes).

• Stopping criterion: the average change of the
Pareto frontiers is lower than 5% for 50 subse-
quent generations, or the maximum number of
generations is reached.

• SVD frequency: orthogonal subpopulation are
generated by SVD every two generations, i.e.,
k = 2. This parameter applies only for DIV-GA.

The setting of GA parameters has been performed
using a MATLAB’s routine, called gaoptimset, which
allows to create a list of options to set all parameters.
Both vNSGA-II and DIV-GA have been executed 30
times for each program under study, in order to
account for their inherent randomness [3].

4.4 Evaluation Metrics

A simple way to evaluate the optimality of a multi-
objective optimization algorithm consists of compar-
ing its set of yielded solutions with those of the
actual Pareto frontier. However, it is impossible to
know a priori the actual Pareto frontier of the test
case selection problem, because for large test suites it
is unfeasible to compute the global optimal solution
using an exhaustive search. In order to perform an a
posteriori evaluation of the obtained Pareto frontiers,
we construct a hybrid frontier by combining the best
parts of the different frontiers achieved by all the
algorithms (in all the runs), and considering only the
solutions that are not dominated by the combined
frontier. We call such a hybrid frontier reference Pareto
frontier [71].

Formally, let P = {P1, . . . , Pl} be the set of l
different Pareto frontiers, the reference Pareto frontier
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Pref is defined as follows:

Pref ⊆
l⋃
i=1

Pi (6)

where Pref is the maximal set of non-dominated
solutions obtained by all the Pareto frontiers, i.e. ∀p ∈
Pref @q ∈ Pref : q � p. Thus, Pref helps to compare
the global optimality of the different algorithms on
the basis of the Pareto frontiers they produce.

We perform a comparison of the different algo-
rithms by estimating two metrics widely used in
global optimization problems:
• Size of Pareto frontier, that represents the number

of non-dominated solutions obtained by each
Pareto frontier Pi.

• Number of non-dominated solutions, that is the num-
ber of solutions that are not dominated by the
reference Pareto frontier Pref . Formally, it can be
defined as the cardinality of the set P ∗i = {p ∈ Pi :
@q ∈ Pref : q � p}. In other words, by definition
of Pref , P ∗i is the subset of Pi contained in the
reference Pareto frontier Pref .

These two metrics were used to answer RQ1.
We also statistically analyze the obtained results, to

check whether the differences between the solutions
produced by two different algorithms are statistically
significant or not. In particular, the values of the two
employed metrics achieved by three algorithms over
different independent runs were statistically com-
pared using the Welch’s t test [13] for both the multi-
objective formulations (as done in previous work [14],
[71]). Welch’s t-test is generally used to test two
groups with unequal variance, e.g., in our case the
variance of the number of non-dominated solutions
produces by the additional greedy and vNSGA-II or
DIV-GA is different2. Significant p-values indicate that
the corresponding null hypothesis can be rejected in
favor of the alternative hypothesis, i.e., that one of the
algorithms produced a Pareto frontier of larger size.
In all our statistical tests we reject the null hypotheses
for p-values < 0.05 (i.e., we accept a 5% chance of
rejecting a null hypothesis when it is true [13]).

We preventively verify the applicability of the
Welch’s t-test on our data by performing the Wilk-
Shapiro normality test. Such a test indicates a non
significant deviation from normality (p-value > 0.05).
Since we apply the Welch’s t-test multiple times,
we report both the original p-values and the corre-
sponding adjusted ones obtained by using the Holm’s
correction procedure [35]. This procedure corrects the
p-values resulting from n tests by sorting them in as-
cending order of values and multiplying the smallest
by n, the next by n−1, and so on. We decided to report

2. Since the additional greedy is a deterministic algorithm, the
variance over 30 independent runs is zero. Conversely, because of
the random inheritance of GAs, both vNSGA-II and DIV-GA do
not reach a zero variance.

both original and adjusted p-values since the applica-
tion of correction procedures is currently debated in
software engineering community when assessing the
performances of randomized algorithms [2].

Other than testing the hypotheses, we also esti-
mated the magnitude of the difference between per-
formances achieved by two algorithms. To this aim,
we used the Cohen d effect size [13]. For dependent
samples (to be used in the context of paired analyses,
as in our study) the Cohen d effect size is defined
as the difference between the means (M1 and M2),
divided by the standard deviation of the (paired)
differences between samples (σD):

d =
M1 −M2

σD
(7)

The effect size is considered small for 0.2 ≤| d |< 0.5,
medium for 0.5 ≤| d |< 0.8 and large for | d |≥ 0.8 [11].

To address (RQ2), we analyze the capability of
optimized test suites—which may be composed of a
smaller number of test cases than the original one—
to detect faults. Since each algorithm provides more
than one solution—i.e., more than one (near) optimal
compromise between cost and coverage—to the best
of our knowledge, there is no metric used in previous
work to compare the effectiveness of two or more dif-
ferent sub-test suites. A simple way to perform such
a comparison consists of plotting the percentage of
faults detected by each solution provided by a given
algorithm and the corresponding execution cost. This
allows to graphically compare two or more Pareto
frontiers, showing the percentage of detected faults
at the same level of execution cost.

In order to quantify the effectiveness of each Pareto
frontier, we also use the hypervolume metric. Such
a metric is generally used to measure the volume
enclosed between a Pareto frontier P = {p1, . . . , ph} as
compared to an ideal/optimal Pareto frontier R [76],
[4]. In other words, the hypervolume measures the
closeness of P to the ideal frontier R; the lower the
hypervolume value, the better the optimality of the
solutions in P [76]. Generally, the hypervolume can
be computed within the space of the objectives to be
optimized, or using external utility functions selected
by the decision maker. In our case, we suggest revis-
iting the hypervolume metric by taking into account
as external utility functions (i) the cost and (ii) the
percentage of faults revealed by each solution (sub-set
of the test suite) in the Pareto frontier. Hence, the goal
is to measure how a Pareto frontier P is optimal from
cost and effectiveness point of view. In this context,
the ideal frontier R is represented by an ideal set of
solutions (sub-test suites) that are able to reveal all
the faults for any level of execution cost. According
to the proposed utility functions, the weighted hyper-
volume indicator becomes a bi-dimensional indicator
as shown in Figure 2.

Without loss of generality, let P = {p1, . . . , ph} be
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Fig. 2: Hypervolume metric based on cost and effec-
tiveness of the sub-test suites.

a set of solutions, i.e., subsets of test cases. Let f(pi)
be the percentage of faults revealed by the solution
pi ∈ P and let cost(pi) be the corresponding execution
cost. Let R = {r1, ..., rh} be the corresponding ideal set
of solutions, i.e. subsets of test cases that are able to
reveal all faults at varying execution cost (cost(ri) =
cost(pi) and f(ri) = 1 for each ri). The hypervolume
enclosed by these points can be easily computed as
the sum of rectangles of width [cost(pi+1) − cost(pi)]
and height [f(ri)− f(pi)], and then it is equal to:

IH(P ) = cost(p1) +

+

h∑
i=1

[cost(pi+1)− cost(pi)] · [1− f(pi)]

(8)

Figure 2 provides a graphical interpretation for
the cost-effectiveness hypervolume of a given Pareto
frontier. The hypervolume metric is an inverse func-
tion: the lower the value, the better the average
effectiveness of all the sub-test suites stated in the
Pareto frontier3. Starting from the cost-effectiveness
hypervolume metric, we can express it as percentage
of the area (hypervolume) under the ideal/optimal
frontier R as follows:

ICE(P ) =
IH(P )

cost(ph)
(9)

where cost(ph) denotes the execution cost of the last
point in the Pareto frontier P . Such a metric measures
the (cost-cognizant) weighted average percentage of
faults detection loss of a Pareto frontier, i.e., the iden-
tified (near) optimal subsets of test suite. Note that we
choose to not consider the reference Pareto frontier as
the ideal frontier when computing ICE(P ) because

3. The hypervolume measures the closeness of the Pareto frontier
P to the ideal effectiveness: all the solutions stated in P are able
to reveal all the faults.

TABLE 3: Two-objective test case selection: mean
Pareto sizes and number of non-dominated solutions
achieved by the different algorithms. The best result
for each program is highlighted in bold face.

Program Method Pareto size Non-Dominated
Solutions

Mean St. Dev. Mean St. Dev.

bash
DIV-GA 354 4.98 311 35.39
Add. Greedy 232 - 30.20 27.24
vNSGA-II 276 5.69 37 52.04

flex
DIV-GA 306 8.52 303 8.23
Add. Greedy 43 - 7 0
vNSGA-II 157 70.99 0 -

grep
DIV-GA 162 2.19 140 3.05
Add. Greedy 70 - 9 -
vNSGA-II 60 - 3.75 4.79

gzip
DIV-GA 222 3.71 186 13.29
Add. Greedy 19 - 5.67 -
vNSGA-II 88 1.36 30 13.48

sed
DIV-GA 270 - 252 18.03
Add. Greedy 33 - 3 -
vNSGA-II 225 33.72 27.45 39.71

printtokens
DIV-GA 86 5.26 55.64 11.75
Add. Greedy 10 - 3 -
vNSGA-II 6.60 2.30 0 -

printtokens2
DIV-GA 96 11.31 63 18.57
Add. Greedy 10 - 4 -
vNSGA-II 23.60 7.50 0 -

schedule
DIV-GA 62.22 3.03 28.33 2.69
Add. Greedy 6 - 2 -
vNSGA-II 1 - 0 -

schedule2
DIV-GA 63.22 5.49 31.14 4.45
Add. Greedy 9 - 4 -
vNSGA-II 18 0.58 0 -

space
DIV-GA 344 4.19 340 12.39
Add. Greedy 119 - 3 -
vNSGA-II 284 85.58 6.67 14.38

vim
DIV-GA 353 1.10 234 75.37
Add. Greedy 266 - 91 77.78
vNSGA-II 339 8.66 6.5 9.19

it is built by considering the best (non-dominated)
solutions obtained by all the algorithms over all the
independent runs. However, the solutions (sub-test
suites) stated in the reference Pareto frontier might
not reveal any fault or a sub-set of all regression
faults. Hence, it cannot be considered as an ideal set of
solutions from an effectiveness point of view, meant
as its ability to detect faults.

5 EMPIRICAL RESULTS

This section discusses the results of our study with the
aim of answering the research questions formulated in
Section 4.1.

5.1 RQ1: To what extent does DIV-GA produce
near optimal solutions, compared to alternative
test case selection techniques?
Table 3 reports the size of Pareto frontiers and the
number of non-dominated solutions for the two-
objective test case selection problem obtained by (i)
DIV-GA, (ii) the additional greedy algorithm, and (iii)
vNSGA-II. Specifically, the table reports mean size
and standard deviation over 30 independent runs of
the algorithms. For all the 11 programs, the number
of solutions forming the Pareto frontiers of DIV-GA
is larger than the number of optimal solutions pro-
duced by the vNSGA-II and by the additional greedy
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TABLE 4: Comparison between different algorithms for the two-objective test case selection problem. Welch’s
t-test p-values, adjusted p-values, and Cohen’s d effect size. We use S, M, and L to indicate small, medium and
large effect sizes, respectively. p− values that are statistically significant (i.e., p− value < 0.05) are reported in
bold face.

Program Hypothesis
Pareto Size Non Dom. Solutions

p-values Adjusted Cohen’s d p-values Adjusted Cohen’s dp-values p-values

bash
DIV-GA > Add. Greedy < 0.01 < 0.01 58.39 (L) < 0.01 < 0.01 8.90 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 16.64 (L) < 0.01 < 0.01 6.16 (L)
Add. Greedy > vNSGA-II 1 1 -10.96 (L) 0.58 0.58 0.16

flex
DIV-GA > Add. Greedy < 0.01 < 0.01 40.92 (L) < 0.01 < 0.01 50.96 (L)
DIV-GA > vNSGA-II 0.37 0.75 2.94 (L) < 0.01 < 0.01 52.69 (L)
Add. Greedy > vNSGA-II 1 1 -2.04 (L) < 0.01 < 0.01 -

grep
DIV-GA > Add. Greedy < 0.01 < 0.01 59.13 (L) < 0.01 < 0.01 56.11 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 12.37 (L) < 0.01 < 0.01 34.05 (L)
Add. Greedy > vNSGA-II < 0.01 < 0.01 2.30 (L) < 0.01 < 0.01 1.44 (L)

gzip
DIV-GA > Add. Greedy < 0.01 < 0.01 77.31 (L) < 0.01 < 0.01 19.19 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 47.92 (L) < 0.01 < 0.01 11.67 (L)
Add. Greedy > vNSGA-II 1 1 -71.41 (L) 1 1 -2.56 (L)

printtokens
DIV-GA > Add. Greedy < 0.01 < 0.01 19.47 (L) < 0.01 < 0.01 6.39 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 18.59 (L) < 0.01 < 0.01 6.65 (L)
Add. Greedy > vNSGA-II < 0.01 < 0.01 1.68 (L) < 0.01 < 0.01 4.32 (L)

printtokens2
DIV-GA > Add. Greedy < 0.01 < 0.01 10.71 (L) < 0.01 < 0.01 2.86 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 6.39 (L) < 0.01 < 0.01 3.04 (L)
Add. Greedy > vNSGA-II 0.41 0.41 0.14 (L) < 0.01 < 0.01 14.32 (L)

schedule
DIV-GA > Add. Greedy < 0.01 < 0.01 26.22 (L) < 0.01 < 0.01 13.83 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 28.33 (L) < 0.01 < 0.01 14.19 (L)
Add. Greedy > vNSGA-II 0.78 0.78 20.74 (L) 0.02 0.02 3.77 (L)

schedule2
DIV-GA > Add. Greedy < 0.01 < 0.01 16.95 (L) < 0.01 < 0.01 8.44 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 11.49 (L) < 0.01 < 0.01 9.66 (L)
Add. Greedy > vNSGA-II 1 1 -25.56 (L) 0.03 0.03 4.54 (L)

sed
DIV-GA > Add. Greedy < 0.01 < 0.01 70.57 (L) < 0.01 < 0.01 19.52 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 3.10 (L) 0.14 0.28 7.28 (L)
Add. Greedy > vNSGA-II 1 1 -11.06 (L) 0.97 0.97 -0.88 (L)

space
DIV-GA > Add. Greedy < 0.01 < 0.01 76.12 (L) < 0.01 < 0.01 38.41 (L)
DIV-GA > vNSGA-II 0.02 0.05 1.00 (L) < 0.01 < 0.01 26.22 (L)
Add. Greedy > vNSGA-II 1 1 2.72 (L) 0.69 0.69 -0.22 (S)

vim
DIV-GA > Add. Greedy < 0.01 < 0.01 12.57 (L) < 0.01 < 0.01 1.86 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 4.18 (L) < 0.01 < 0.01 4.17 (L)
Add. Greedy > vNSGA-II 1 1 17.50(L) < 0.01 < 0.01 1.45 (L)

algorithm. For example, on gzip DIV-GA provides a
Pareto frontier with 222 solutions on average, while
vNSGA-II provides 186 solutions, and the additional
greedy algorithm only 19. This represents a substan-
tial improvement from the tester’s perspective, since a
larger Pareto frontier provides a wider range of can-
didate solutions that provide different compromises
between cost and coverage.

The analysis of Table 3 reveals that there is no clear
winner among the additional greedy and vNSGA-
II, confirming the results of previous study [71]. In
5 cases out of 11, the size of the Pareto frontiers
obtained by vNSGA-II is smaller than the Pareto
frontiers obtained by the additional greedy, while for
the remaining cases the size for vNSGA-II is larger.

DIV-GA also turned out to be able to produce a
larger number of non-dominated sub-test suites with
respect to all the other algorithms. In particular, the
majority of subset of tests forming the Pareto frontiers
of DIV-GA are also non-dominated by any other algo-
rithm. For example, on bash the Pareto frontier pro-
duced by DIV-GA contains 354 solutions, and among
them 311 solutions are non-dominated by those ob-
tained by all the other algorithms (i.e., such solutions
are stated in the reference Pareto frontiers), while

the number of non-dominated solutions provided
by the additional greedy algorithm and vNSGA-II
is really small, especially when compared with the
total amount of provided solutions. For example, on
bash the additional greedy provides 232 different
solutions. However, among them only 30 solutions
(less than 13%) are non-dominated by the solutions
of the other algorithms (in particular by those of
DIV-GA). Similarly, vNSGA-II obtains 276 different
solutions, but only 13% of them are non-dominated
by those of the other algorithms. In summary, for the
two-objective formulation, DIV-GA not only produces
more Pareto optimal sub-test suites than the other
algorithms, however these sub-test suites provide bet-
ter code coverage with lower execution cost than the
solutions produced by the other algorithms.

The considerations above are also supported by
statistical analyses. Table 4 reports the results of the
Welch’s t-test and Cohen’s d effect size, obtained
comparing (across the 30 GA runs) the size of the
Pareto frontiers and the number of non-dominated
solutions achieved by the experimented algorithms4.

4. As explained in Section 4.4, besides showing the p-values
we also show the p-value adjusted using the Holm’s correction
procedure [35].
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Fig. 3: Pareto frontiers.

The statistical analysis confirms that DIV-GA always
produces Pareto frontiers that are significantly larger
than those produced by the additional greedy algo-
rithm (in 100% of cases) and by vNSGA-II (in 82%
of cases). The corresponding effect size values reveal
that the magnitude of the improvement of DIV-GA
over the other two algorithms is large (d >1) in the
majority of cases: 100% of the cases for the additional
greedy and 91% of the cases for vNSGA-II.

As for the number of solutions DIV-GA statistically
outperforms the other two algorithms with a large
effect size in all the cases. When comparing the ad-
ditional greedy and vNSGA-II, we can also note that
for all the 11 programs none of the two algorithms
turns out to be statistically better than the other in
terms of Pareto optimality. In fact, in some cases the
additional greedy significantly outperforms vNSGA-
II, while other cases the opposite happens.

Figure 3 provides—for some programs consid-
ered in our study, i.e., flex, grep, gzip and
printtokens—a graphical comparison between the
Pareto frontiers obtained by the three algorithms and
a “reference” Pareto frontier, built as explained in
section 4.4. We obtained consistent results for all other
programs as well (see [51] for further details).

As it can be noticed, the Pareto frontiers provided
by DIV-GA are much closer to the reference Pareto
frontiers (often the two frontiers are perfectly over-
lapped) than the Pareto frontiers provided by vNSGA-
II and the additional greedy. The additional greedy
algorithm provides solutions that are, in some cases,
quite close to the reference frontiers. However, the
majority of them are dominated by solutions pro-
duced by DIV-GA. Instead, vNSGA-II produces so-
lutions quite far from the optimal set of solutions
(e.g., on printtokens). Only on gzip, vNSGA-II
provides Pareto fronts that are close to the reference
frontiers. However, such algorithms provided a lower
number of solutions with respect to DIV-GA (this
explains the substantial difference in terms of Pareto
frontier size reported in Table 3) and also such so-
lutions are slightly worse than the reference frontier
(this explains the lower number of non-dominated
solutions reported in Table 3). Particularly interesting
are the results obtained for all the programs in the
Siemens suite —i.e., printtokens, printtokens2,
schedule, and schedule2—where vNSGA-II is
very far from the optimal Pareto frontier while DIV-
GA provides (near) optimal frontiers. Finally, DIV-
GA provides a larger number of non-dominated so-
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TABLE 5: Three-objective formulation of the test case
selection problem: mean size of Pareto frontier and
mean number of non-dominated solutions obtained
by the different algorithms. The best result for each
program is highlighted in bold face.

Program Method Pareto size Non-Dominated
Solutions

Mean St. Dev. Mean St. Dev.

bash
DIV-GA 354 2.98 310 53.73
Add. Greedy 233 - 31 -
vNSGA-II 276 4.47 48 69.20

flex
DIV-GA 331 8.06 328 8.04
Add. Greedy 47 - 7 -
vNSGA-II 139 44.62 0 -

grep
DIV-GA 317 13.06 294 44.21
Add. Greedy 72 - 6 -
vNSGA-II 207 46.23 21 42.73

gzip
DIV-GA 198 4.97 171 11.30
Add. Greedy 19 - 1 -
vNSGA-II 195 4.66 130 20.77

printtokens
DIV-GA 110 33.28 110 33.71
Add. Greedy 13 - 7 -
vNSGA-II 6 2.77 0 -

printtokens2
DIV-GA 190 30.11 189 27.70
Add. Greedy 11 - 4 -
vNSGA-II 11 3.50 0 -

schedule
DIV-GA 213 11.33 199 11.29
Add. Greedy 10 - 6 -
vNSGA-II 123 21.48 18.67 30.24

schedule2
DIV-GA 136 23.09 91 27.77
Add. Greedy 11 - 1 -
vNSGA-II 118 20.47 9 20.20

sed
DIV-GA 195 38.02 164 43.48
Add. Greedy 33 - 5 -
vNSGA-II 98 19.83 36.14 12.56

space
DIV-GA 360 - 318 59.51
Add. Greedy 126 - 7 -
vNSGA-II 360 - 78 91.65

vim
DIV-GA 393 1.77 219 16.29
Add. Greedy 266 - 163 -
vNSGA-II 182 3.50 26.43 10.75

lutions that also cover a wider range of coverage and
execution cost values with respect to vNSGA-II. In
particular, vNSGA-II is not able to generate solutions
(sub-sets of the test suite) with low-coverage and low-
execution cost (code coverage is always greater than
50%). Instead, DIV-GA provides solutions with code
coverage values ranging from 0% to the maximum
coverage value.

Table 5 compares the performance of the three
experimented algorithms for the three-objective for-
mulation of the test case selection problem. Also in
this case, results are shown in terms of mean and
standard deviation of the size of Pareto frontiers and
number of non-dominated solutions computed across
30 independent runs of each algorithm.

In all cases, the size of the Pareto frontiers obtained
by DIV-GA is larger than those obtained using the
additional greedy algorithm. For example, on gzip
DIV-GA provides 198 solutions against 19 solutions
produced using the additional greedy. DIV-GA also
produces larger Pareto frontiers than vNSGA-II in 9
out of 11 cases, while on space and gzip the size
of the Pareto frontiers is exactly the same. However,
by looking at the non-dominance of the solutions,
DIV-GA always produces a number of non-dominated
solutions larger than the number of non-dominated

solutions produced by the other two algorithms. Such
solutions are also stated on the reference frontier, i.e.,
they are not dominated by solutions produced by the
other algorithms. Conversely, the majority of solutions
produced by the additional greedy and vNSGA-II are
dominated by—i.e., they are worse than—the solu-
tions of DIV-GA. For example, on flex the additional
greedy algorithm produces 47 solutions forming the
Pareto frontier, and among them only 7 solutions
(less than 15% of the total amount of the produced
solutions) are non-dominated by any other algorithm.
Similarly, vNSGA-II produces 139 solutions for the
same program, but none of them belongs to the refer-
ence Pareto frontier, i.e., all of them are dominated by
other solutions. Hence, for the three-objective test case
selection problem, DIV-GA produces a larger number
of sub-test suites with higher code coverage, higher
past fault coverage and lower execution cost than both
vNSGA-II and the additional greedy.

Results of the Welch’s t test confirm that the differ-
ences between DIV-GA and the other two algorithms
are also statistically significant. Table 6 reports the
p-values obtained comparing the Pareto frontier size
and the number of non-dominated solutions achieved
by the experimented algorithms (the p-values have
been adjusted using the Holm’s [35] correction pro-
cedure). For all programs, the Pareto frontiers pro-
duced by DIV-GA are significantly larger than those
produced by the additional greedy (100% of cases)
and by vNSGA-II (82% of cases) with a very large
effect size in all the cases. When comparing vNSGA-
II and the additional greedy, we can also note that
vNSGA-II produces a larger number of sub-test suites
than the additional greedy.

DIV-GA also always produces a larger number of
solutions—i.e., more sub-test suites—that are non-
dominated by any solution obtained by the other
algorithms. The results also show that in general
the additional greedy algorithm is dominated by
vNSGA-II. However, on some programs —i.e. flex,
grep, printtokens, printokens2, and vim— the
additional greedy algorithm produces more optimal
results than vNSGA-II, as was also pointed out by
Yoo et al. [71].

Figures 4-6 show the results for the three-objective
formulation on three programs, i.e., flex, gzip,
and printtokens. Consistent results have been ob-
tained for all the other programs (see the on-line Ap-
pendix [51] for further details). The 3D plots displays
the solutions produced by (i) DIV-GA, (ii) the addi-
tional greedy algorithm, (iii) vNSGA-II, and (iv) the
reference Pareto frontier (denoted using black dots).
The additional greedy algorithm produces solutions
that are quite close to the reference frontier. However
the number of the produced solutions is really small
if compared to the reference frontier. DIV-GA always
produces three-objective solutions stated in the refer-
ence frontier: in all cases more than 90% of the solu-
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TABLE 6: Comparison between different algorithms for the three-objective test case selection problem. Welch’s
t-test p-values, adjusted p-values, and Cohen’s d effect size. We use S, M, and L to indicate small, medium
and large effect sizes respectively. Statistically significant p− values (i.e., < 0.05) are reported in bold face.

Program Hypothesis
Pareto Size Non Dom. Solutions

p-values Adjusted Cohen’s d p-values Adjusted Cohen’s dp-values p-values

bash
DIV-GA > Add. Greedy < 0.01 < 0.01 57.48 (L) < 0.01 < 0.01 7.31 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 20.59 (L) < 0.01 < 0.01 4.22 (L)
Add. Greedy > vNSGA-II 1 1 -13.60 (L) 0.73 0.73 0.34 (S)

flex
DIV-GA > Add. Greedy < 0.01 < 0.01 49.82 (L) < 0.01 < 0.01 56.40 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 5.96 (L) < 0.01 < 0.01 57.49 (L)
Add. Greedy > vNSGA-II 1 1 -2.94 (L) < 0.01 < 0.01 20.62

grep
DIV-GA > Add. Greedy < 0.01 < 0.01 26.56 (L) < 0.01 < 0.01 9.21 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 3.25 (L) < 0.01 < 0.01 6.28 (L)
Add. Greedy > vNSGA-II 1 1 -4.12 (L) < 0.01 < 0.01 0.49 (M)

gzip
DIV-GA > Add. Greedy < 0.01 < 0.01 50.88 (L) < 0.01 < 0.01 56.00 (L)
DIV-GA > vNSGA-II 0.12 0.25 0.62 (M) < 0.01 < 0.01 4.46 (L)
Add. Greedy > vNSGA-II 1 1 -53.37 (L) 1 1 -8.81 (L)

printtokens
DIV-GA > Add. Greedy < 0.01 < 0.01 4.14 (L) < 0.01 < 0.01 4.39 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 4.43 (L) < 0.01 < 0.01 4.66 (L)
Add. Greedy > vNSGA-II < 0.01 < 0.01 3.68 (L) < 0.01 < 0.01 19.45 (L)

printtokens2
DIV-GA > Add. Greedy < 0.01 < 0.01 8.41 (L) < 0.01 < 0.01 9.42 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 8.377 (L) < 0.01 < 0.01 9.62 (L)
Add. Greedy > vNSGA-II 0.40 0.40 0.12 < 0.01 < 0.01 12.13 (L)

schedule
DIV-GA > Add. Greedy < 0.01 < 0.01 9.12 (L) < 0.01 < 0.01 24.21 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 2.63 (L) < 0.01 < 0.01 7.91 (L)
Add. Greedy > vNSGA-II 1 1 -7.46 (L) 0.82 0.82 0.59 (M)

schedule2
DIV-GA > Add. Greedy < 0.01 < 0.01 7.63 (L) < 0.01 < 0.01 4.57 (L)
DIV-GA > vNSGA-II 0.07 0.14 0.80 (L) < 0.01 < 0.01 3.38 (L)
Add. Greedy > vNSGA-II 1 1 -7.39 (L) 0.94 0.94 0.55 (M)

sed
DIV-GA > Add. Greedy < 0.01 < 0.01 6.03 (L) < 0.01 < 0.01 7.07 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 3.19 (L) < 0.01 < 0.01 5.62 (L)
Add. Greedy > vNSGA-II 1 1 -4.65 (L) 1 1 3.51 (L)

space
DIV-GA > Add. Greedy < 0.01 < 0.01 251.46 (L) < 0.01 < 0.01 8.98 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 145.73 (L) < 0.01 < 0.01 1.02 (L)
Add. Greedy > vNSGA-II 1 1 -83.09 (L) 0.93 0.93 -2.64 (L)

vim
DIV-GA > Add. Greedy < 0.01 < 0.01 106.25 (L) < 0.01 < 0.01 4.88 (L)
DIV-GA > vNSGA-II < 0.01 < 0.01 76.70 (L) < 0.01 < 0.01 13.97 (L)
Add. Greedy > vNSGA-II < 0.01 < 0.01 33.84 (L) < 0.01 < 0.01 17.96 (L)

tions obtained by DIV-GA overlap the reference fron-
tier. Hence, DIV-GA always produces solutions that
are non-dominated by any other algorithm. Instead,
vNSGA-II produces (near) optimal solutions only in
a few cases. For example, on gzip the Pareto frontier
obtained by vNSGA-II is quite close to the reference
Pareto frontier, even if Table 6 reveals that only a
part of such solutions are non-dominated, while on
printtokens, the solutions obtained by vNSGA-II
are quite far from the reference Pareto frontier.

RQ1 Summary: For both the two- and three-
objective test case selection problems, we can con-
clude that DIV-GA is always able to produce more
Pareto-optimal sub-test suites than the additional
greedy algorithm and vNSGA-II. Such sub-test suites
represent Pareto-optimal compromises between cov-
erage and cost.

5.2 RQ2: Which is the cost-effectiveness of DIV-
GA, compared to alternative test case selection
techniques?
Table 7 reports the mean values of the cost-
effectiveness hypervolume metric (IEC) related to the
different Pareto frontiers produced by the three exper-
imented algorithms: (i) DIV-GA, (ii) additional greedy,

and (iii) vNSGA-II. The reported values represent the
mean of the IEC values achieved over 30 independent
runs. Results are also collected according to the two
formulations of test case selection problem investi-
gated in this paper.

For the two-objective formulation, in 10 out of 11
programs the hypervolume values obtained by DIV-
GA are smaller than those achieved by the additional
greedy. Hence, the test cases stated in the correspond-
ing Pareto frontiers are able to detect more faults with
a lower execution cost (which mirrors a lower average
percentage of fault detection loss). Only on sed, the
additional greedy produces the same hypervolume
values as DIV-GA. A similar analysis can be done by
comparing DIV-GA and vNSGA-II: for all programs,
the IEC values provided by DIV-GA are better then
those provided by vNSGA-II. When comparing the
additional greedy and vNSGA-II, it is possible to
observe that there is no clear winner among them,
also from an effectiveness point of view. In 2 out
of 11 cases, the test cases selected by vNSGA-II can
detect more faults than the solutions detected by the
additional greedy algorithm, while in 6 out of 11
cases the greedy algorithm outperforms vNSGA-II. In
the remaining 3 cases, there is no difference between

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2364175

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



20

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

Add. Greedy
Reference

(a)

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

DIV−GA
Reference

(b)

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

vNSGA−II
Reference

(c)

Fig. 4: Three-objective Pareto Frontiers achieved on flex.
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Fig. 5: Three-objective Pareto Frontiers achieved on gzip.
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Fig. 6: Three-objective Pareto Frontiers achieved on printtokens.

the IEC values achieved by the two algorithms. This
result indicates that injecting diversity in GAs improves
the effectiveness of multi-objective GAs (vNSGA-II in
our case).

To provide a graphical interpretation to the IEC
metric, Figure 7 plots the percentage of faults detected
by the solutions (sub-test suites) provided by the
three algorithms at same level of execution cost on
space and printtokens. We can observe that the
sub-test suites selected by DIV-GA are able to detect
more faults than the additional greedy with lower
execution cost. For example, on space the test suites
optimized by DIV-GA can detect 100% of faults, while
the percentage of faults produced by the other two
algorithms is lower at the same level of execution

cost. Similar considerations can be made on the other
programs (see the on-line Appendix [51] for further
details).

For the three-objective formulation of the test case
selection problem, we obtained results that are quite
similar to those obtained for the two-objective for-
mulation (see Table 7). Indeed, for all the programs,
the cost-effectiveness hypervolume values achieved
by DIV-GA are smaller than those achieved by the ad-
ditional greedy. This means that the test cases within
the corresponding Pareto frontiers are able to detect
more faults with a lower execution cost, mirroring
a lower average percentage of fault detection loss
per unit cost. A similar analysis can be done by
comparing DIV-GA and vNSGA-II. In general, DIV-
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Fig. 7: Effectiveness of the achieved sub-test suites for two-objective test case selection.

TABLE 7: Mean cost-effectiveness hypervolume val-
ues. The best result for each program is highlighted
in bold face.

Program Method ICE

2-Objective 3-Objective

bash
Add. Greedy 0.45 0.32
DIV-GA 0.39 0.30
vNSGA-II 0.52 0.48

flex
Add. Greedy 0.03 0.15
DIV-GA 0.02 0.05
vNSGA-II 0.04 0.20

grep
Add. Greedy 0.51 0.51
DIV-GA 0.40 0.27
vNSGA-II 0.40 0.28

gzip
Add. Greedy 0.56 0.52
DIV-GA 0.51 0.51
vNSGA-II 0.60 0.54

printtokens
Add. Greedy 1 0.72
DIV-GA 0.83 0.60
vNSGA-II 0.97 0.81

printtokens2
Add. Greedy 0.86 0.17
DIV-GA 0.81 0.08
vNSGA-II 1 0.86

schedule
Add. Greedy 1 0.07
DIV-GA 0.97 0.06
vNSGA-II 0.98 0.10

schedule2
Add. Greedy 1 0.89
DIV-GA 0.99 0.84
vNSGA-II 1 0.89

sed
Add. Greedy 0.23 0.20
DIV-GA 0.23 0.10
vNSGA-II 0.28 0.10

space
Add. Greedy 0.35 0.14
DIV-GA 0.24 0.12
vNSGA-II 0.35 0.16

vim
Add. Greedy 0.24 0.23
DIV-GA 0.22 0.19
vNSGA-II 0.33 0.25

GA obtains the best hypervolume values. Only on
grep and sed the ICE values obtained by DIV-GA
and vNSGA-II are the same. When comparing the
additional greedy and vNSGA-II, we can observe that
in general the additional greedy is better in terms of
fault detection-effectiveness. In 2 out of 11 cases, the
test cases selected by vNSGA-II can detect more faults

than the test cases selected by the additional greedy
algorithm, while in 8 out of 11 cases the additional
greedy outperforms vNSGA-II. Finally, in only one
case there is no difference between the IEC values
produced by the two algorithms.

Figure 8 plots the cost/faults curves obtained by
the three algorithms. The goal of such an analysis is
to provide a graphical comparison of the percentage
of faults detected by the different solutions (sub-test
suites) at same level of execution cost. We can notice
that the sub-test suites obtained by DIV-GA are able to
detect more solutions than both the additional greedy
and vNSGA-II with a lower (or in some cases the
same) execution cost. For example, on space, the test
suites optimized by DIV-GA can detect 100% of the
faults, while the percentage of faults detected by the
other two algorithms is lower for the same level of
execution cost. On printtokens, all the algorithms
provide solution that are able to reveal all faults.
However, DIV-GA turned out to be better than the
other techniques in terms of execution cost. Similar
considerations can be made on the other programs
(see the on-line Appendix [51] for further details).

RQ2 Summary: For both two and three-objective
formulations of the test case selection problem, we
can conclude that DIV-GA is always able to produce
optimal sub-test suites within the Pareto frontiers.
Such sub-test suites are able to reveal more faults than
the sub-test suites obtained by the additional greedy
algorithm and vNSGA-II. Moreover, the correspond-
ing execution cost is lower than the other techniques.

6 ADDITIONAL ANALYSES
In this section we provide additional empirical anal-
yses to assess the execution time of the experimented
algorithms, the benefits of injecting diversity in the
genotype space and the individual contribution of
the orthogonal design defining the initial population
and of the orthogonal evolution of the population
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Fig. 8: Effectiveness of the achieved sub-test suites for three-objectives test case selection.

through SVD. Although these analyses are not directly
part of the study described in Sections 4–5, they help
to understand the performance of the proposed and
experimented algorithm, as well as to understand the
factors that could have played an important role in
the performance of DIV-GA.

6.1 Execution Time of the Experimented Algo-
rithms
The results show that DIV-GA provides better re-
sults than the other two algorithms with respect to
the investigated research questions. However, DIV-
GA introduces the computation of SVD—which is
known to be quite expensive—in the main loop of
a GA. Previous studies [15] have shown that injecting
diversity through SVD in GAs drastically increases the
convergence speed of the algorithm, thus more than
compensating the extra time required to periodically
compute SVD. In this section we compare the execu-
tion times of the different algorithms experimented
in our empirical study. Table 8 reports the average
execution time required by each algorithm for each
software program used in the empirical study. The ex-
ecution time was measured using a machine with Intel
Core i7 processor running at 2.40GHz with 8GB RAM.
For both two- and tree-objective formulation, we can
note that DIV-GA requires less execution time for its
convergence with respect to vNSGA-II. Specifically,
DIV-GA takes 52% of the execution time required by
vNSGA-II for the same programs, on average. This
is an important improvement if we also consider that
DIV-GA not only is much faster than vNSGA-II, but it
provides more optimal sub-test suites (RQ1) that are
able to reveal more faults (RQ2).

When comparing the GAs with the addition greedy,
as expected we found that the greedy algorithm is the
fastest one in general. However, for the two largest
systems (i.e., bash and vim) the greedy algorithm
turned out to be the worst one, requiring more than 40

minutes for its execution against 20 minutes on aver-
age required by DIV-GA. This results is not surprising
since, as explained by Harrold et al. [29] the greedy al-
gorithm has an execution time of O (| T | ·max | Ti |),
where | T | represents the size of the original test
suite, while max | Ti | denotes the cardinality of the
largest group of test cases which is able to reach
the maximum coverage. For large systems, max | Ti |
might increase a lot because the number of test cases
(and then the number of iterations for the additional
greedy) required to reach the maximum coverage can
be very high. For example, with the two-objective
formulation the additional greedy selected 232 test
cases on bash, which also corresponds to the number
of its iterations; while on a small program such as
schedule the additional greedy selected only 9 test
cases, i.e. it performed only 9 iterations. These results
motivate the investigation of new fast meta-heuristics
against the additional greedy algorithms especially for
larger programs.

6.2 Effect of Injecting Diversity in the Genotype
Space
Most approaches dealing with the genetic drift (e.g.,
distance crowding) inject diversity in the phenotype
space which also naturally mirrors increasing diver-
sity in the genotype space. Conversely, the approach
proposed in this paper injects diversity in the geno-
type space. Specifically, our conjecture is that injecting
diversity in the genotype space also results in an
increment of the diversity in the phenotype space. The
results of our empirical study confirm our conjecture
showing that DIV-GA generally overcomes previous
approaches. However, to provide further empirical
evidence that injecting diversity in the genotype space
through orthogonal design and orthogonal evolution
also has an effect on the phenotype diversity, we com-
pare the average phenotype diversity of the solutions
obtained by DIV-GA and vNSGA-II when varying
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TABLE 8: Average Execution Time for Algorithms

Program 2-Objectives 3-Objectives
Add. Greedy DIV-GA vNSGA-II Add. Greedy DIV-GA vNSGA-II

bash 40min 26s 18min 41s 23min 40s 40min 31s 20min 25s 25min 47s
flex 1min 1s 2min 45s 4min 21s 1min 7s 2min 51s 5min 40s
grep 1min 53s 3min 25s 4min 52s 2min 4s 3min 45s 5min 57s
gzip 3s 31s 1min 15s 4s 33s 1min 22s
printtokens 1min 9s 2min 59s 10min 27s 1min 10s 3min 52s 11min 7s
printtokens2 1min 14s 1min 25s 3min 42s 1min 30s 1min 32s 4min 8s
schedule 11s 43s 2min 51s 33s 1min 15s 4min 23s
schedule2 10s 47s 3min 45s 31s 55s 4min 18s
sed 10s 1min 2s 2min 5s 15s 1min 33s 2min 25s
space 52s 48s 2min 11 55s 1min 7s 2min 20s
vim 40min 11s 17min 59s 23min 27s 40min 12s 22min 9s 30min 45s

the number of generations. At each generation a
MOGA (i.e, DIV-GA or vNSGA-II) provides a pool
of candidate solutions that can be compared in the
phenotype space according to a given distance func-
tion (e.g., Euclidian distance). According to Črepinšek
et al. [65], in multi-objective optimization a widely-
used approach to measure the phenotype diversity of
a given solution X consists of computing the average
normalized Euclidean distance between X and all the
other solutions within a population in the phenotype
space. Specifically, let P = {X1, X2, . . . , Xm} be the
set of solutions in a given population and let F =
{f1, . . . , fr} the set of objective functions which define
the phenotype space. The phenotype diversity of a
generic solution Xi ∈ P can be computed as follows
[65]:

df (Xi) =
1

m− 1

m∑
j=1,j 6=i

√√√√ r∑
t=1

(
fr(Xi)− fr(Xj)

fmaxr − fminr

)2

(10)
where fr(Xi) denotes the value of the objective func-
tion fr for Xi, while fmaxr and fminr denote the
maximum and minimum value of fr in the current
population, respectively. Thus, the phenotype diver-
sity of a whole population can be computed as the
average phenotype diversity of all its solutions:

df (P ) =
1

m

m∑
j=1

df (Xj) (11)

We can use df (P ) to measure the average pheno-
type diversity for each generation and compare the
phenotype diversity of the populations obtained by
vNSGA-II and DIV-GA at varying number of gen-
erations. To this aim, Figure 9 plots—for some pro-
grams considered in our study, namely flex, grep,
gzip and printtokens— the phenotype diversity
produced by vNSGA-II and DIV-GA at different gen-
erations for the two objective formulation of the test
case selection problems. We obtained consistent re-
sults for all other programs and for three-objective
test case selection problem as well (see the on-line
Appendix [51] for further details).

As it can be noticed, the average phenotype dis-
tance between solutions obtained by DIV-GA is al-
ways higher than those achieved by vNSGA-II. In
particular, for all programs the phenotype distance
between the solutions generated by DIV-GA increases
within very few generations and remains greater
or equal to 40%, while for vNSGA-II the average
phenotype distance between the solutions is always
lower than 22%, but for printtokens where it is
lower than 5%. Thus, we can conclude that injecting
diversity in the genotype space through orthogonal
design and orthogonal evolution also increases the
phenotype diversity.

6.3 Individual Contribution of Orthogonal Design
and Orthogonal Evolution

Another important aspect to be further investigated is
represented by the individual contribution of orthogo-
nal design and orthogonal evolution on the performances
of DIV-GA. To this aim, Figure 10 shows—for bash
and printtokens— the Pareto fronts achieved by
two variants of DIV-GA: (i) DIV-GA without orthog-
onal evolution and (ii) DIV-GA without orthogonal
design. We obtained consistent results for all other
programs and for three-objective test case selection
problem as well.

The DIV-GA without orthogonal design (i.e., with
orthogonal evolution alone) achieved wider Pareto
fronts that are close to the fronts obtained by the
complete DIV-GA (i.e., the version that includes both
orthogonal evolution and orthogonal design). How-
ever, often this variant of DIV-GA fails to find optimal
solutions having high levels of coverage. For example,
on bash this variant produces solutions (sub-sets of
the test suite) that are dominated by the solutions
achieved by DIV-GA and the other variant with or-
thogonal design alone. Vice versa, the variant of DIV-
GA which incorporates only the orthogonal design
(i.e., without orthogonal evolution) on the one hand
turned out to be very efficient in finding solutions
having higher coverage values (such solutions are
close to the solution obtained by the complete version
of DIV-GA). On the other hand, such a variant is not
able to find any solution with lower coverage values.
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Fig. 9: Average phenotype distance between the solutions obtained by vNSGA-II and DIV-GA.

Thus, we can conclude that even if both the two
mechanisms introduced in this paper, i.e. orthogonal
design and orthogonal evolution, are designed to
increase the diversity between the obtained solutions
in the genotype space, they have a different effects on
the performances of MOGAs. Therefore, DIV-GA re-
quires both diversity-preserving mechanisms in order
to achieve good performances.

7 THREATS TO VALIDITY

This section discusses the threats to the validity of our
empirical evaluation, classifying them into construct,
internal, external, and conclusion validity.

Threats to construct validity concern the relationship
between theory and observation. In this study, they
are mainly related to the choice of the metrics used
to evaluate the characteristics of the different test
case selection algorithms. In order to evaluate the
optimality of the experimented algorithms (DIV-GA,
additional greedy, and vNSGA-II) we used two well-
known metrics: (i) Pareto frontier size, and (ii) num-
ber of solutions not dominated by reference Pareto
frontiers [16]. Such metrics have been also used in
previous work on multi-objective test case selection
[14], [28], [71], [72]. The effectiveness of the Pareto
sets achieved by all the algorithms was measured
by using the hypervolume indicator, which is widely
used in multi-objective optimization [4]. In particular,

we used (i) execution cost and (ii) percentage of de-
tected faults as utility functions to build a bi-objective
hypervolume indicator. Another construct validity
threat involves the correctness of the measures used
as test criteria: statement coverage, faults coverage
and execution cost. To mitigate such a threat, the code
coverage information were collected using two open-
source profiler/compiler tools (GNU gcc and gcov).
The execution cost was measured by counting the
number of source code blocks expected to be executed
by the test cases, while the original fault coverage
information was extracted from the SIR dataset [36].

Threats to internal validity concern factors that could
have influenced our results and that were not prop-
erly considered. In this study, a crucial factor is the
random nature of the GAs themselves [3]. To address
this problem, we ran the experimented GAs (DIV-GA
and vNSGA-II) 30 times for each subject program (as
done in previous work [14], [71], [73]), and considered
the mean values of the measures used to evaluate
the optimality and effectiveness. Another threat to
internal validity is represented by the algorithms used
to compute orthogonal vectors in the DIV-GA: there
is no unique algorithm to generate orthogonal vectors
and different algorithms might affect the performance
of the proposed algorithm. To address such a potential
issue we report the algorithm used in this paper. The
tuning of the GAs parameters is another factor that
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Fig. 10: DIV-GA without orthogonal design (i) vs. DIV-GA without orthogonal evolution (ii).

can affect the internal validity of this work. In this
study we used the same parameters used in previous
work on multi-objective test case selection [14], [71],
[73].

Threats to external validity concern the generaliza-
tion of our findings, and are related to the set of
programs used in the experimentation. We considered
11 programs from the SIR, that were also used in most
previous work on regression testing [9], [14], [37], [56],
[57], [67], [71], [72], [73]. However, in order to corrob-
orate our findings, replications on a wider range of
programs and optimization techniques are desirable.
The replication of the study we conducted in this
paper is part of our agenda for future work. Also,
there may be optimization algorithms or formulations
of the test case selection problem not considered in
this study that could produce better results. No partic-
ular algorithm is known to be effective for the multi-
objective test case selection problem [72], and usually
the evaluation of a search-based algorithm involves a
comparison with other kinds of algorithms. In this pa-
per we compared DIV-GA with the additional greedy
algorithm, and vNSGA-II in order to evaluate the
benefits of the proposed algorithms over the most
used ones. Moreover, in order to make more gener-
alizable the results, we evaluated all the algorithms
with respect to solving two different formulations of
the test case selection problem with two and three
objectives to be optimized.

Finally, for what concerns conclusion validity, we
support our findings by using appropriate statisti-
cal tests, i.e. the Welch’s t-test. We performed Wilk-
Shapiro normality test to verify wether the Welch’s
t-test could be applied to our data. Finally, we used
the Cohen’s d effect size to measure the magnitude of
the differences between the experimented algorithms.

8 CONCLUSION AND FUTURE WORK
This paper proposed a novel diversity-preserving
technique based on orthogonal design and orthogo-

nal evolution to improve the performance of multi-
objective Genetic Algorithms (GAs) when solving
multi-criteria regression testing problems. Specifically,
we proposed DIV-GA (DIVersity based Genetic Algo-
rithm), a novel multi-objective GA which combine the
main loop of the popular NSGA-II with the diversity-
preserving mechanism formulated in this paper for
multi-objective test case selection.

An empirical study conducted on 11 open source
programs and test suites shows that DIV-GA outper-
forms both additional greedy algorithm and the island
version of NSGA-II referred as vNSGA-II, which were
considered as the best optimizers for multi-objective
test case selection problem [9], [29], [50], [69], [71],
[73]. In particular, DIV-GA allows not only to generate
more optimal trade-offs with respect to the other
optimizers when considering two and three test case
selection criteria, but its selected sub-test suites turned
out to be more cost-effective. Indeed, the sub-test
suites generated by DIV-GA are able to reveal more
faults at same level of execution cost than the sub-
test suites obtained by both the additional greedy
algorithm and vNSGA-II.

The results achieved in our experimentation sup-
port our initial conjecture. Injecting diversity in the
genotype space through orthogonal exploration also
drastically increases diversity in the phenotype space,
even when the basic MOGA already includes pheno-
type diversity injection mechanisms, like in the case
of vNSGA-II. Without sound diversity mechanisms
the potential of GAs can be seriously undermined, as
shown in our empirical study. This is true in the test
case selection problem, but also in other software en-
gineering problems, such as test case generation [38].

An important issue that was analyzed by De Lucia
et al. [15] and by Kifetew et al. [38] for single-objective
GAs and has been confirmed in this study is that the
cost of computing SVD is more than compensated
by the higher convergence speed of DIV-GA. Indeed,
on average DIV-GA halves the execution times of
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vNSGA-II and for large programs drastically reduces
the execution times of the greedy algorithm.

Our final conjecture, that we plan to verify in the
future, is that the proposed diversity mechanisms
can be properly customized in order to improve the
plethora of search-based approaches that have been
recently proposed to support software engineering
tasks (e.g., refactoring and scheduling) but that do not
properly consider the diversity as an important issue.
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