
1

REPENT: Analyzing the Nature of
Identifier Renamings

Venera Arnaoudova1, Laleh M. Eshkevari1, Massimiliano Di Penta2,
Rocco Oliveto3, Giuliano Antoniol1, Yann-Gaël Guéhéneuc1

1École Polytechnique de Montréal, Québec, Canada
2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

venera.arnaoudova@polymtl.ca, laleh.eshkevari@polymtl.ca, dipenta@unisannio.it,
rocco.oliveto@unimol.it, antoniol@ieee.org, yann-gael.gueheneuc@polymtl.ca

Abstract—
Source code lexicon plays a paramount role in software quality: poor lexicon can lead to poor comprehensibility and even
increase software fault-proneness. For this reason, renaming a program entity, i.e., altering the entity identifier, is an important
activity during software evolution. Developers rename when they feel that the name of an entity is not (anymore) consistent with
its functionality, or when such a name may be misleading. A survey that we performed with 71 developers suggests that 39%
perform renaming from a few times per week to almost every day and that 92% of the participants consider that renaming is
not straightforward. However, despite the cost that is associated with renaming, renamings are seldom if ever documented—for
example, less than 1% of the renamings in the five programs that we studied. This explains why participants largely agree on the
usefulness of automatically documenting renamings. In this paper we propose REPENT (REANAMING PROGRAM ENTITIES),
an approach to automatically document—detect and classify—identifier renamings in source code. REPENT detects renamings
based on a combination of source code differencing and data flow analyses. Using a set of natural language tools, REPENT
classifies renamings into the different dimensions of a taxonomy that we defined. Using the documented renamings, developers
will be able to, for example, look up methods that are part of the public API (as they impact client applications), or look for
inconsistencies between the name and the implementation of an entity that underwent a high risk renaming (e.g., towards the
opposite meaning). We evaluate the accuracy and completeness of REPENT on the evolution history of five open-source Java
programs. The study indicates a precision of 88% and a recall of 92%. In addition, we report an exploratory study investigating
and discussing how identifiers are renamed in the five programs, according to our taxonomy.

Index Terms—Identifier renaming, Refactoring, Program comprehension, Mining software repositories, Empirical Study

F

1 INTRODUCTION

When the source code of a program evolves [36], its
identifiers evolve too [2]. Thus identifier renaming,
i.e., the activity during which an entity—e.g., a local
variable, a method, or a class—changes its name,
has a paramount importance in software evolution1.
Developers rename when they feel that the name of
an entity is not (anymore) consistent with its func-
tionality or when such a name may easily create
understanding problems.

We surveyed 71 developers of industrial and open-
source systems about their renaming habits. We ob-
serve that renaming is tangled with many devel-
opment activities—most of the participants perform
renaming while performing other refactorings (90%
of surveyed developers); changing or adding func-
tionality (89% and 65% respectively); understanding
existing code (51%); or fixing bugs (42%).

1. Renaming is per se considered a refactoring activity [21]. In this
paper, we focus only on how developers change the source code
lexicon rather than on how the source code is restructured.

Renaming is an activity that 39% of participants per-
form from a few times per week to almost every day
and 46% perform a few times per month. Partici-
pants mainly use automatic tools to perform renaming
(72%), although 20% say that they rename manually
and 8% do it in both ways. However, although tool
support is available, 92% of the participants consider
renaming not straightforward and only 24% think that
in most cases renaming has no cost. Indeed, the largest
fraction of the surveyed developers (67%) believes
that the cost of renaming depends on the particular
case and that it requires time and effort. For example,
participants underline that renaming identifiers that
belong to non-local scope may break backward com-
patibility, increase integration cost, or impair program
understanding for those already familiar with the old
name.

However, despite the renaming cost, risks, and im-
plications for program understanding, only a small
percentage of the renamings is actually documented—
1% of the renamings in the five programs that we
studied. This explains why a high number of partic-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

ipants (52%) consider the automatic documentation
of renamings useful; one of the surveyed developers
explains that “if there were an easy way to look renaming
up, it would potentially be informative when backtracking
for problems, or even just trying to understand someone
else’s code. You can often learn a lot about what something
does by looking at how other people disagree regarding
what it does.” The developer echoes George Santayana:
“Those who cannot remember the past are condemned to
repeat it” [48]. We share their point of view and argue
that documenting renamings is important to track
changes in vocabulary and to create traceability links
between entities over time.

This paper describes REPENT (RENAMING PRO-
GRAM ENTITIES), an approach to detect identifier
renamings across different versions of a program
and to automatically classify renamings according
to a taxonomy that indicates (i) what kind of iden-
tifier was renamed (e.g., class name), (ii) whether
one or more terms composing the identifier were
added/removed/changed (e.g., a term is added when
renaming files to srcFiles2), and (iii) how terms
were changed with respect to their semantics (e.g., to-
wards opposite meaning when renaming disable to
enable) and grammar (e.g., from adjective to noun
when renaming localDeclaration to location).

REPENT combines tracking of changed Java source
code lines with data-flow analysis on programming
entities. It first identifies changed source code lines
using a lightweight file differencing tool from which
it extracts declared entities and maps them across ver-
sions to identify candidate renamings. Then, REPENT
applies def-use analysis for the entities participating
in candidate renamings to further reduce false posi-
tives. Finally, REPENT uses WordNet3 [43] and the
Stanford Part-of-Speech Analyzer [53] to classify the
detected renamings according to our taxonomy.

We argue that integrating REPENT into existing ver-
sion control systems or into Integrated Development
Environments (IDE) will allow developers to browse
for renamings as they feel the need. For example,
developers will be able to look up methods that are
part of the public API as those renamings must be
documented in the release notes for client applica-
tions. Developers will also be able to look for incon-
sistencies such as (i) methods whose name changed
from singular to plural but whose return type did
not change accordingly (e.g., is not a collection) and
(ii) fields whose name changed towards the opposite
meaning, but whose functionality or documentation
are not consistent.

2. All examples, unless stated otherwise, are taken from the
five programs that we studied and are available in an online
index at http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/
repent-index/repent-index.html.

3. http://wordnet.princeton.edu

Using REPENT, we document—i.e., detect and
classify—the renamings of five Java programs (Ar-
goUML, dnsjava, Eclipse-JDT, JBoss, and Tomcat) over
several years of evolution history. We show that RE-
PENT accurately (precision of 88% and a recall of
92%) detects renamings throughout the evolution his-
tory of large projects. We discuss interesting examples
of renamings in those programs as well as possible
reasons for some of the renamings.

In the rest of this section we define the necessary
terminology (Section 1.1) and provide an overview of
the structure of this paper (Section 1.2).

1.1 Definition of Renaming

Identifier renaming is the activity during which an
entity changes its name from an old name to a new
name. Renaming alters entities names (e.g., classes,
methods). We make no distinction between name and
identifier; we use the two words interchangeably.
Identifiers (e.g., cpuMaxClock) are composed of terms,
where each term is a dictionary word, an abbreviation,
or an acronym (e.g., cpu, Max, and Clock).

Renaming an identifier implies adding, removing,
changing, or reordering terms of the old name. Thus,
an identifier renaming can be seen as being composed
of a set of term renamings, in which old terms are
changed to new terms.

1.2 Paper Structure

Section 2 motivates this research and reports results
of the survey that we performed. Section 3 describes
the taxonomy we defined to classify identifier renam-
ings. Section 4 describes the proposed approach to
(i) detect identifier renamings and (ii) classify them
according to our taxonomy. Section 5 aims at empir-
ically evaluating the accuracy and completeness of
REPENT renaming detection. Section 6 reports and
discusses the results of the exploratory study4. Sec-
tion 7 discusses threats that could affect the validity of
our empirical studies. Section 8 discusses the related
literature, while Section 9 concludes the paper and
outlines directions for future work.

2 A DEVELOPERS’ SURVEY ON IDENTIFIER
RENAMING

This section motivates the need for automatic renam-
ing detection and classification. For this purpose, we
designed an online survey to understand the impor-
tance of renaming, i.e., to what extent developers of

4. The working data set for the study reported in this paper
is available online at http://ser.soccerlab.polymtl.ca/ser-repos/
public/tr-data/repent-data.tgz.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

open-source/industrial projects perform identifier re-
naming, under what circumstances, and whether they
believe that identifier renaming requires automatic
documentation. We invited 739 developers, via e-
mail using a convenience sampling [23], involving (i)
original developers of the five Java programs that we
study in this paper and (ii) other developers from the
industry and open-source communities. 71 developers
responded to the survey resulting in a response rate
close to 10% as expected [23]. Although we profile
survey participants based on their background, their
identity is kept anonymous for confidentiality pur-
poses. Figures with detailed results are reported in
Appendix A.

In the following we summarize the results of the sur-
vey and we illustrate them with comments from the
participants. We complement the survey output with
examples that we collected from online discussions
of the analyzed programs (issue reports, mailing lists,
and commit notes).

How often do developers rename?: Renaming is
an activity that participants perform from almost
every day (21%), a few times per week (18%), a few
times per month (46%), to once per month (14%). A
developer commented: “There’s a balance to be struck: -
identifiers are communication, and as the code is refactored
it is critical that identifiers continue to correctly describe
their purpose - changing identifiers tends to break APIs,
and sometimes they’re used for unintended purposes,
over-frequent change is not good.”

Is renaming straightforward?: When we asked par-
ticipants whether renaming has a cost, only 8% an-
swered that renaming is straightforward. 24% of par-
ticipants think that in most cases renaming has no
cost, often due to the availability of automatic tool
support. Indeed the majority of participants (72%) use
automatic tool support to perform renaming, although
20% rename manually and 8% use a mix of both,
i.e., rename manually and automatically. 32% of par-
ticipants believe that the cost of renaming depends on
the particular case: “Renaming identifiers that belong to
non-local context (e.g., public or protected methods) has a
potentially massive cost associated with breaking the inter-
faces between components. Otherwise it is typically a rather
cheap and non-disruptive exercise that may have end benefit
of more readable and consistent code. Another element of
cost and risk is when the identifiers are being bound to
at runtime only (e.g., when classes are loaded by name or
methods are bound by name). It is not always easy to trace
all such use cases in a large system.” Indeed, renaming
an entity that is part of a public API of a program has
a higher cost as it breaks backward compatibility and
increases the integration cost of the program in client
programs. 10% of participants believe that in most
cases renaming has a cost, and finally 25% answer that

renaming defiantly requires time and effort. Another
example where renaming has a cost is when the team
uses code reviews, as developers must schedule a
code review and justify their decision. A developer
indicated that code reviews impact the frequency of
renaming “because you appear negatively to the boss when
asking for a review on a ‘too minor improvement”’. The
cost of renaming also includes the cost of finding a
proper name and assuring that the new name reflects
the purpose of the entity in all scenarios that it is
used. Quotes like “I have the feeling that your method
name is not good [..]” for method getBufferForWrite

in an Eclipse issue report (issue #332248) indicates
that, indeed, developers spend time understanding
the rationale behind names that are chosen by other
teammates.

Already postponed a renaming?: It also appears
that, although necessary, some renamings are de-
layed. After discussing the difference between the
term “delete” and “remove”, an ArgoUML developer
concluded that: “[..] maybe I shall rename these after
next release” (issue #2938). We asked participants to
share reasons for which they recall having decided
not to rename an entity. 52% recall the reason to be
the potential impact on other systems. A developer
explains: “As a middleware developer, providing a stable
API is paramount for clients. There are numerous cases
where we would not rename a class or method despite an
obviously better name being proposed, in order to minimize
the cost of integrating new versions.” 35% recall that the
renaming was too risky, i.e., it might have introduced
a bug—a developer recalls: “I encountered a problem
when my colleague wrote Java code which uses reflection.
I avoided renaming some classes/methods which will be
inspected by the reflection, since doing so can introduce
unpredictable bugs.” 25% of participants answered that
the high impact of the renaming on the system was
the show-stopper and finally, 25% recall deciding not
to rename because of the high effort required: “I’m
not touching poorly-worded APIs which are shared across
multiple projects - the cost of the change does not justify it
[..].” Participants also shared that the impact on other
developers is sometimes decisive: “If too many people
in the company know a thing by name X it’s sometimes
better to keep it even when name Y is more descriptive.”
Other factors impacting the decision to undertake a
renaming are insufficient domain knowledge (85% of
participants), code ownership (79%), and close dead-
line (76%).

How can REPENT help in such a context?: De-
tecting and classifying renamings with REPENT—
for example generating parts of commit notes when
renaming occurs—can be used by developers while
backtracking bugs or understanding changes of pro-
gram entities. REPENT allows developers to differ-
entiate and thus document and retrieve all or only

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

certain types of renamings—e.g., renamings towards
opposite meaning as they deserve more attention and
can be flagged to make sure that they reflect the de-
veloper’s intentions. The documentation of renamings
is also useful as a starting point for documenting API
changes in release notes. Last but not least REPENT
can reduce the unnecessary cost of some renamings by
informing developers about names that were already
changed in the past.

We asked participants whether they consider use-
ful automatically documenting renaming and 52%
of them were positive. A developer elaborates: “It
depends on how this was implemented, but if it were field-
level history, e.g., like svn records history for a file, then I’m
all for it [..]”; “Tracking changes to public api is imperative
in large fast moving teams.”

3 IDENTIFIER RENAMING TAXONOMY

REPENT classifies renamings along the dimensions
of a taxonomy that extends and refines the taxonomy
proposed in our previous work [19]. We built the
taxonomy based on a grounded-theory approach [22],
[50] considering dimensions that we believe apply to
source code identifiers and the terms that compose
them. Specifically, we built the taxonomy by looking
at identifier renamings, which we manually validated
in our previous work [19], and grouping them into
categories. The manual analysis required multiple
iterations in order to converge and to consider all the
dimensions of the proposed taxonomy.

The taxonomy comprises four dimensions, namely
entity kinds, forms of renaming, semantic changes, and
grammar changes. The first dimension distinguishes
renamings based on the programming paradigm,
whereas the last three dimensions distinguish re-
namings based on different natural language aspects.
A summary of REPENT taxonomy is reported in
Table 1. The dimensions are orthogonal and thus
each renaming will be classified in each dimension of
the taxonomy. However, there are implicit relations
between levels of the different dimensions. For ex-
ample, classifying an identifier renaming in form of
renaming as formatting only implies that in semantic
change and grammar change it will be classified as none.
Concretely, in the field renaming invParamsPtr
→ invalidParamReferencesPtr the term inv is
expanded to become invalid; Params changed to
Param; Reference was added; and Ptr stayed un-
changed (see Fig. 1). According to our taxonomy, this
renaming will be classified as follows:

• Entity kind: Field,
• Form of renaming: Complex as two terms are

changed, and one term is added,

Fig. 1. Example of classifying a renaming based on
the proposed taxonomy.

TABLE 1
Summary of the identifier renaming taxonomy

Entity kinds

Package
Type
Field
Constructor
Method/Getter/Setter
Parameter
Local Variable

Forms of renaming

Simple
Complex
Formatting only
Term reordering

Semantic changes

Preserve meaning

Synonym
Synonym phrase
Spelling error correction/introduction
Expansion
Abbreviation

Change in meaning

Opposite
Opposite phrase
Whole-part
Whole-part phrase
Unrelated

Narrow meaning Specialization
Specialization phrase

Broaden meaning Generalization
Generalization phrase

Add meaning
Remove meaning
None

Grammar changes Part of speech change
Singular/Plural
Verb conjugation
Other

None

• Semantic change: Preserve meaning as the term
renaming inv → invalid is an expansion, and
add meaning as the term Reference is added,

• Grammar change: Part of speech change as the term
renaming Params→ Param implies a change from
plural to singular.

In the rest of this section we describe the different
dimensions of the taxonomy.

3.1 Entity Kinds

The first dimension of the taxonomy concerns the
kind of the renamed entity, i.e., whether the renamed
entity is a package, type (i.e., class, interface, or
enumeration), field (i.e., class variables, instance vari-
ables, constants, or enumeration constants), construc-
tor, method, getter (i.e., field accessor), setter (i.e., field

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

modifier), parameter, or local variable. We distinguish
getters and setters from other methods using naming
conventions, i.e., the method name must start with the
keywords “get” (“is” for boolean return type) or “set”
and of a field name.

3.2 Forms of Renaming

The second dimension provides a classification of the
renaming to determine whether one or more terms
were changed, whether the renaming was solely re-
lated to text formatting, or whether it consisted in
term reordering. REPENT considers the following
forms.

Simple: Those are renamings where one term
has been changed, e.g., predeclareStatements →
predeclare where the term Statements has been
removed and override → overriding where the
only term composing the old name has been renamed.

Complex: Those are renamings where more
than one composing terms have been renamed,
e.g., IsAssignmentWithNoEffectMASK→ Assignment

HasNoEffect.

Formatting only: Those are renamings where no term
renaming occurs, but rather changing letter cases or
adding/removing term separators. Examples include
getJRMPPort→ getJrmpPort and JavaExtension→
JAVA_EXTENSION.

Term reordering: Those renamings consist in ex-
changing the position of terms composing the
old identifier. Examples: setDelaySocketClose →
setSocketCloseDelay and pojoNoInterfacesIntro

→ noInterfacesPOJOIntro.

3.3 Semantic Changes

The semantic changes dimension concerns changes
(or not) in the meaning of the identifier due to the
addition/removal of terms to/from the identifier or
due to changing one or more terms with terms hav-
ing different (or same) meaning. As a result, identi-
fiers change while (i) preserving their meaning, (ii)
changing their meaning, (iii) adding meaning, or (iv)
removing meaning. There is no semantic change when
only the format or order of terms change.

3.3.1 Preserve Meaning

Renamings falling in this category preserve the mean-
ing of the identifier.

Synonym: The old and new terms have the same
meaning (according to a given ontology). For

example, in the renaming isPotentialMatch →
isPossibleMatch, the two terms are synonyms.

Synonym phrase: One or more terms in the
old identifier are renamed to one or more
terms in the new identifier while preserving the
meaning. Example: javadocNotVisibleReference

→ javadocHiddenReference where the renamed
terms (visible and hidden) are antonyms and one
of them is negated (visible and not visible).

Spelling error: Examples of correction and intro-
duction of spelling errors are actionMesasage →
actionMessage and sourceField → fiieldInfo re-
spectively. While one can easily understand the ratio-
nale of spelling error correction, spelling error intro-
duction can happen as a side effect of a renaming.

Expansion: A renaming towards expansion occurs
when a term—often not belonging to the English
dictionary—is expanded into a (longer) term, often be-
longing to the English dictionary: setAuthMechanism
→ setAuthenticationMechanism and collab →
collaboration.

Abbreviation: A renaming towards abbreviation is
the opposite of a renaming towards expansion and
occurs when a term—often belonging to the English
dictionary—is contracted into a shorter term, often not
belonging to the English dictionary: packageName →
pkgName and operationDesc → opDesc.

3.3.2 Change in Meaning

Renamings falling in this category include cases in
which the renaming changes the meaning of the old
identifier.

Opposite: The new term has the opposite meaning
of the old term (antonym), e.g., disableLookups →
enableLookups.

Opposite phrase: One or more terms in the old
identifier are renamed to one or more terms
in the new identifier with an opposite meaning:
isNotPrimitiveType → isPrimitiveType where
the term Primitive is negated. Also, it can
happen that a term is replaced by a synonym
and is negated: isNonModifiableContainer →
canUpdateContainer.

Whole-part: The new and the old terms hold a whole-
part relation (holonym/meronym); respective exam-
ples are Point → Line (fictitious example) and body

→ node.

Whole-part phrase: When more than one whole-part
relation exists in the renamed identifiers. An example
in this category is Path → FileAndDirectory (ficti-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

tious example5).

Unrelated: The old and new terms have unrelated
meanings. It is the case for the terms expression and
script in the identifier renaming expressionModel

→ scriptModel.

3.3.3 Narrow Meaning

Specialization: The meaning of the old identifier
is narrowed when a term is renamed to
its hyponym, e.g., thrownExceptionSize →
boundExceptionLength, where the new term
Length is a hyponym of the old term Size.

Specialization phrase: Adding a term that specifies
another term narrows the meaning of the old iden-
tifier: item → todoItem and type → authType. To
do so, we consider nouns and adjectives modifiers
(as specifiers) added before a term because, based on
our qualitative analysis done using grounded theory,
these are the most common modifiers that developers
use to specify other terms.

3.3.4 Broaden Meaning

Generalization: Opposite to specialization, here the
old and new terms hold a generalization relation,
i.e., the new term is a hypernym of the old term,
e.g., getAccessRestriction → getAccessRuleSet,
where the term Rule is a hypernym of term
Restriction.

Generalization phrase: Opposite to specialization
phrase, here a specifying term is removed. Examples:
eventName → name and getInitialRepetitions →
getRepetitions. As in specialization phrase, we con-
sider nouns and adjectives as modifiers.

3.3.5 Add Meaning

Add meaning renamings happen when an identifier
is renamed by adding one or more terms and such a
change does not fall into any of the cases discussed
above, i.e., in which the meaning is kept or changed.
In other words, the added terms add meaning to the
identifier, rather than changing (e.g., generalizing, spe-
cializing, or negating) the current meaning: _delete
→ deletePossible and flags → typeAndFlags.

5. The example is fictitious as REPENT did not classify any of
the renamings detected in the five programs as whole-part phrase.
However, for the sake of completeness and because results may be
different for different programs we decided to keep this level of the
taxonomy.

3.3.6 Remove Meaning

Remove meaning renamings happen when an identi-
fier is renamed by removing one or more terms and,
again, the change does not fall into any of the above
cases. That is, the term removal also removes meaning
from the identifier. Examples: includeRule → rule

and removedPackagePath → packagePath.

3.3.7 None

No change in any of the terms in the identifier implies
no semantic change, i.e., the semantic change will be
none. This is when the change is only in letter cases
or adding/removing term separators.

3.4 Grammar Changes

The grammar changes dimension concerns changes
in the part of speech of terms. We further classify
part of speech changes into verb conjugation changes,
singular to plural changes (and vice versa), or other
(e.g., change from noun to adverb).

3.4.1 Part of Speech Change

Those renamings occur when the part of speech of
any term composing the old identifier changes. We
consider the part of speech set contained in the
Penn Treebank Tagset [42]. Thus, a grammar change
occurs when an adjective is changed to a verb,
as in getUpdatedSize → updateFigGroupSize. We
further focus our attention on nouns and verbs as,
to the best of our knowledge, they represent the
most critical part of identifiers. Specifically, nouns are
shown to be the most important in terms of meaning
[11], whereas verbs are used in naming methods and
thus changes of verbs can imply changes in function-
ality [1], [10].

3.4.2 None

There is no grammar change when the modi-
fied terms’ part of speech remains the same. For
example, renaming method isPotentialMatch to
isPossibleMatch does not imply any grammar
change as both terms, Potential and Possible,
are tagged as adjective. Moreover, renamings classi-
fied as formatting only in the forms of renaming will
also be classified as none in the grammar change,
e.g., getJRMPPort → getJrmpPort.

4 RENAMING DETECTION AND CLASSIFI-
CATION

Fig. 2 shows the processing steps of REPENT at a
high level of detail to outline the renaming detection

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Pre-processing

Source
code

1: Line differencing
& mapping

2: Data flow
analysis

Line and
entity

mappings

Entity
def-use

3: Renaming
detection

Candidate
renamings

4: Candidate
renaming filtering

Detected
renamings

5: Renaming
classification

Renamings
Classified

Fig. 2. REPENT: Renaming detection and classification process.

and classification processes. REPENT first detects a
set of candidate renamings by means of file context diff
and filters out false renamings using def-uses pairs,
textual analysis, and heuristics. Finally, REPENT clas-
sifies renamings along the taxonomy dimensions.

4.1 Renaming Detection

The first step of the process, step 1 in Fig. 2, is
detailed in Fig. 3. In this step, REPENT compares two
source files by applying a line differencing algorithm,
the Unix context diff algorithm, which produces as
output a set of line mappings. REPENT uses the
mapped source code lines to compare and map enti-
ties declared into mapped lines and identify candidate
renamings.

The comparison of source files is performed between
two consecutive versions of a file or, in case of re-
named files, between the file with the old name and
the one with the new name. To identify file renam-
ings, REPENT first builds the list of candidate file
renamings consisting of (i) all possible couples formed
by one file removed in the change set and one file
added in the same change set and (ii) explicit renam-
ings in the versioning system (SVN only). For CVS
a change set is computed by grouping files based on
the commit time stamp (less than 200 seconds between
commits belonging to the same change set), commit
note, and committer name [58]. Then, REPENT eval-
uates each couple and selects the best option if the
difference between the two files is reasonably low.
Specifically, we use the Unix diff algorithm to compare
the number of changed lines between two files and
we consider them as a file renaming if the difference
does not exceed a relative threshold of 60%. The value
for the threshold is estimated based on the central
tendency of explicitly renamed files as logged by the
versioning file system.

The output of the comparison between two files is a
mapping between lines of the old and new files; four
cases must be considered:

1) One-to-one line mapping: one line of the old
file is mapped onto one line of the new file. Fig.
4 shows an example where line 12 is mapped
onto line 14. These two mapped lines are com-
pletely unrelated. Indeed, this is a case where
the line mapping fails to map the lines correctly.
To overcome this limitation of line mapping,
we perform a cross validation step (see Section
4.2.4).

2) One-to-many line mapping: one line of the old
file is mapped onto multiple lines of the new
file.

3) Many-to-one line mapping: multiple lines of the
old file are mapped onto one line of the new file.

4) Many-to-many line mapping: multiple lines of
the old file are mapped onto multiple lines of the
new file. Fig. 5 shows an example where lines
203 to 206 of the old file are mapped onto lines
203 to 206 in the new file.

Once REPENT creates lines mappings, it maps enti-
ties that are declared into mapped lines, i.e., it creates
entities mappings. To this end, REPENT first parses
source code, creates an Abstract Syntax Tree (AST) us-
ing Eclipse Java Development Tools (JDT), and iden-
tifies the line numbers of all declared entities. Next,
given the line mappings and the entities declarations
for each source code line, REPENT creates an entity
mapping. Again, four cases are possible:

1) One-to-one entity mapping: there is exactly one
entity of a same kind that is declared in the old
line(s) (e.g., local variable) as well as in the new
line(s). In this case, the old entity is mapped onto
the new entity.

2) One-to-many entity mapping: there is only one

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Fig. 3. Details of the renaming detection process.

entity declared in the old line(s), while there are
many entities declared in the new line(s). In this
case, the old entity is mapped onto several new
entities.

3) Many-to-one entity mapping: this is the con-
verse of the previous case, i.e., several old enti-
ties are mapped onto one new entity.

4) Many-to-many entity mapping: there are sev-
eral entities declared in the old line(s) and in
the new line(s). In this case, the old entities are
mapped onto the several new entities.

The entity mapping computed at this (early) stage has
to be considered as possible mappings and thus as
candidates renamings.

Fig. 4 shows an example of a one-to-one line mapping
corresponding to a one-to-one entity mapping in Tom-
cat. The developer added a method terminate at line
14 of the new file. The line mapping algorithm maps
line 12 in the old file—containing the declaration of
method loadNative—onto line 14 of the new file.
REPENT discovers only one entity declared in the old
file, as well as in the new one and builds the mapping,
i.e., candidate renaming, loadNative to terminate6.

Fig. 5 shows a less trivial example where many
entities are declared into the mapped lines
(i.e., many-to-many line mapping and many-to-
one entity mapping). Thus, in this case, four
entities (STATE_INITIAL, STATE_INITIALIZED,
STATE_STARTED, and STATE_STOPED) are mapped
into one (STATE_PRE_INIT).

For entities that are part of candidate renamings
REPENT performs data flow analysis. REPENT first
builds a symbol table considering the entities scope,
signature, and line number. Then, it identifies modifi-
cations and uses within and across files by resolving
the imports of the files.

4.2 Candidate Renaming Filtering

The set of mapped entities computed in the previous
step may contain false positives. For example, if a

6. This mapping is not desired and that the candidate renaming
will be later filtered out due to the low similarity between the two
entity declarations.

public class AprImpl {
 …
 private void loadNative() {
 …
 }
 // Temp - testing only, will be moved
 //to separate file
 public void main(String args[]) {
 …
 }
}

1
…
12
…
…
…
…
…
…
...
...

public class AprImpl {
 …
 public native int terminate();
 …
 public void loadNative(String libPath) {
 try {
 if (libPath==null)
 libPath="jni_connect";
 // XXX use load() for full path
 if (libPath.indexOf("/") >=0 ||
 libPath.indexOf("\\") >=0) {
 System.load(libPath);
 } else {
 System.loadLibrary(libPath);
 }

} catch(RuntimeException ex) {
 ex.printStackTrace();
 }
 }
}

1
…
14
…
44
…
…
…
…
...
...
...
...
...
...
...
...
...
...
...

<<line mapping>>

Old version New version

terminateloadNative
<<entity mapping>>

Fig. 4. Example of one-to-one entity mapping.

 ...
 public static final int ACC_INIT_END=1;
 public static final int ACCOUNTS=2;
 // State
 public static final int STATE_INITIAL=0;
 public static final int STATE_INITIALIZED=1;
 public static final int STATE_STARTED=2;
 public static final int STATE_STOPED=3;
 …
 // ------- local variables -------
 private int state=STATE_INITIAL;
 …
 /**
 * Adds a new Context to the set managed
 * by this ContextManager.
 * @param ctx context to be added.
 */
 public void addContext(Context ctx)
 throws TomcatException {
 ...
 if(state == STATE_INITIAL)
 return;
 …
 }
…
}

...
…
...
…

203
204
205
206
…
...
...

Old version
 ...
 public static final int ACC_INIT_END=1;
 public static final int ACCOUNTS=2;
 // State
 /** Server is not initialized
 */
 public static final int STATE_PRE_INIT=0;
 /** Server was initialized, engineInit() was called.
 * addContext() can be called.
 */
 public static final int STATE_INIT=1;
 …
 // ------- local variables -------
 private int state=STATE_PRE_INIT;
 …
 public final void initContext(Context ctx) throws TomcatException {
 if (state != STATE_PRE_INIT) {
 ...
 }
 }
 …
 /**
 * Adds a new Context to the set managed
 * by this ContextManager.
 * @param ctx context to be added.
 */
 public void addContext(Context ctx) throws TomcatException {
 ...
 if(state == STATE_INITIAL)
 return;
 …
 }
…
}

...
…
...
…

203
204
205
206
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

New version

<<line mapping>>

STATE_PRE_INIT
STATE_INITIAL

STATE_INITIALIAZED
STATE_STARTED
STATE_STOPPED

O1

O2

O3

N1

N3

N2

N4

<<entity mapping>>

Fig. 5. Example of many-to-one entity mapping.

code fragment is moved from the top to the bottom of
its file then the context diff may not trace it—produces
incorrect results and several entity mappings may
be created. The mapped entities cannot however be
discarded outright if the old entity also exists in the
new files. For example, a developer can move the
body of a method into a new one (with a new method
name); replacing the body of the old method with a
call to the new method. Thus, REPENT must first
assign a score to each entity mapping, then check if
the entity in the old file also exists in the new one, and
if so, compute a score for this new pair, and based
on this latter score (compared to the other scores),
keep or prune the other entity mappings. This latter
step is referred in the following as “cross validation
consistency check”.

Fig. 6 reports details on the REPENT filtering strat-
egy. Two cases may occur: (i) both entities in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

candidate renaming have def-uses or (ii) at least one
of the entities has no def-use. The second case is
particularly common for getters and setters as they
are often automatically generated and not necessarily
used in the program.

For entities with def-uses, REPENT calculates the
score of two entities involved in a candidate renaming
as the textual similarity between the lines where the
entity def-uses have been detected. For the entities
without def-uses, the score is the textual similarity
between the two entity declarations.

Finally, once scores are available, cross validation
consistency check is performed. The following sub-
sections provide details on how REPENT computes
such scores and filters out likely false renamings.

4.2.1 Computing the Score between Entities with
Def-uses

Let us assume that there are n statements in the old
file where a given entity, say El, is either defined
or used (or both). Also, let us assume that El has a
candidate mapping with the entity Ek, and that in the
new file there are m statements where the entity Ek

is defined or used. To assign a score to the matching
(El, Ek) REPENT creates an n × m statement score
matrix. A matrix entry (i, j) contains the similarity
score between statement si and sj respectively of
the old and new release. Before computing the score,
REPENT removes the name of the entities from both
statements (i.e., si and sj), to remove any bias intro-
duced by similar entity names. The assigned score is
based on the Normalized Levenshtein edit Distance
(NLD) [37], defined as:

NLD(si, sj) =
LD(si, sj)

length(si) + length(sj)
(1)

where LD(si, sj) is the Levenshtein edit Distance
between si and sj . The score assigned to the statement
pair (si, sj), cell (i, j), of the statement score matrix is
computed as 1−NLD(si, sj).

REPENT uses heuristics to prune low scores and thus
reduce false positives. If the similarity is lower than a
given threshold, named Statement Similarity Threshold
(SST) (see Appendix B.1), the selection is filtered out
by setting the (i, j) matrix entry to zero. REPENT
uses different threshold values depending on the kind
of entity. The reason behind this choice is the different
nature of the definitions and uses of different entities.

As shown in Fig. 6, REPENT applies the Hungarian
algorithm on the statement score matrix to identify the
best possible matching between statements. The Hun-
garian algorithm [31] is an optimization algorithm
used to solve the assignment problem, e.g., assigning

tasks to people, which given a score/cost matrix, will
find the best assignment, i.e., maximizing/minimizing
the score/cost between matrix lines and columns.

The result of the Hungarian algorithm is used to
assign a score to the pair of entities (El, Ek) as
follows. If the number of mapped statements with
scores higher than zero is higher than a prede-
fined threshold—named Number of Matched Statements
Threshold (NST)—then the score between the two enti-
ties is the sum of the similarities between the mapped
def-uses; otherwise, the score is set to zero.

Consider the example in Fig. 5, which describes a
many-to-one entity mapping where entities have def-
uses. In this example, REPENT computes the scores
for the following four possibilities:

STATE_INITIAL → STATE_PRE_INIT

STATE_INITIALIZED → STATE_PRE_INIT

STATE_STARTED → STATE_PRE_INIT

STATE_STOPED → STATE_PRE_INIT

Fig. 7 illustrates the computation of the score
for the first possibility, i.e., STATE_INITIAL →
STATE_PRE_INIT. In particular, once identified the
def-uses, the entity names are removed and the sim-
ilarity is computed between all the possible pairs of
def-uses for the old and new entities. Such similarities
are then stored in the statement score matrix.

The application of the Hungarian algorithm on the
statement score matrix for the candidate renaming
STATE_INITIAL → STATE_PRE_INIT creates the fol-
lowing statement matches: O1 → N1, O2 → N2, and
O3 → N4, where Oi (Ni) is the ith statement of the
older (newer) entity. The similarity scores of the
matched statements for fields should be more than
0.8 according to Table 15. The heuristic to prune false
renamings for fields states that one must have a num-
ber of matched statements higher or equal to 40% (see
Appendix B.1) of the longest list of def-use statements
for a candidate matching to be considered (this is to
say, 40% of the largest score matrix dimension).

In the example described above, the matrix is a three
by four matrix, which means that at least two def-uses
must be matched (4× 40% = 1.6 ≈ 2). Actually, three
statements have been matched, thus the score for the
two entities (STATE_INITIAL and STATE_PRE_INIT)
is the sum of the scores mapped by the Hungarian
algorithm: 3.00 (= 1.00 + 1.00 + 1.00).

4.2.2 Computing the Score between Entities without
Def-uses

If at least one of the entity has no def-uses, the
computation of the similarity is based on the textual
similarity between the two entity declaration state-
ments, ds1—the declaration statement of the entity

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Fig. 6. Candidate renaming filtering process.

STATE_INITIAL=0
state=STATE_INITIAL
IfStatement: state == STATE_INITIAL

STATE_PRE_INIT=0
state=STATE_PRE_INIT
IfStatement:state != STATE_PRE_INIT
IfStatement:state == STATE_PRE_INIT

Remove the name
of entity

Remove the name
of entity

=0
state=
IfStatement: state ==

=0
state=
IfStatement:state !=
IfStatement:state ==

Compute statement
score matrix

O1
O2
O3

N1
N2
N3
N4

0.00 0.00 0.001.00
1.00 0.000.00

0.00 0.980.00

N2 N3 N4N1

O1

O2

O3

0.00

O1
O2
O3

N1
N2
N3
N4

1.00

Statement score matrix

Def-uses
STATE_INITIAL

Filtered def-uses
STATE_INITIAL

Def-uses
STATE_PRE_INIT

Filtered def-uses
STATE_PRE_INIT Compute renaming

score
Candidate
renaming

score

Fig. 7. Computing the score of a candidate renaming in presence of entity def-uses.

in the old file—and ds2—the declaration statement
of the entity in the new file. Also in this case,
if the similarity (1 − NLD(ds1, ds2)) is lower than
a predefined threshold—named Declaration Similarity
Threshold: (DST)—we discard the candidate renaming
by setting its similarity to the minimum, i.e., to zero.

To better understand how the similarity is computed
in this particular case, let us go back to the exam-
ple of Fig. 4. In this example, only one candidate
renaming has been identified, i.e., loadNative →
terminate. Because both methods have no def-uses,
we simply compute the similarity between the dec-
larations, i.e., between private void loadNative()

and public native int terminate(). The similarity
between these two entities (1−NLD(ds1, ds2), where
ds1 is the declaration statement of loadNative and
ds2 is the declaration statement of terminate) is 0.63

which is lower than the fixed DST threshold (0.7); thus
the score between loadNative and terminate is set
to zero.

4.2.3 Computing the Score between Candidate Pack-
age Renamings

Using a package means importing that package or
types declared in that package. Thus, a score based
on def-uses is not suitable for package renamings as
it does not allow one to distinguish between a case
where types were moved from one package to another
and a case where the package was actually renamed.
In both cases, the use of the package will change in an
identical manner; however, only the second situation
is an actual package renaming. Thus, REPENT first
computes the score of candidate package renamings
using the version control system (to identify renamed,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

added, and deleted folders); then it filters out candi-
date package renamings that do not match a change
in the folder structure of the version control system
by setting their score to zero.

4.2.4 Filtering Out Likely False Renamings

As noted above, REPENT must also cross-check if en-
tities exist in both files before promoting a candidate
renaming to a real renaming. In essence, two further
steps are needed: cross validation and entity score
evaluation.

Cross validation consistency check: This step is
necessary as there may be cases in which the line
mapping is not precise. These cases often occur when
source code fragments are moved within the same file
(as in Fig. 4). Since line mapping relies on the Unix
diff, and since diff relies of the context, i.e., surrounding
statements, such moving of code may result in wrong
line mapping.

To cope with this imprecision, REPENT cross-checks
each entity of a candidate renaming—i.e., in the old
file REPENT looks for an entity with the same name
as the new entity and in the new version REPENT
looks for an entity with the same name as the old
entity—and computes the score between the two en-
tities, using the algorithms described in Sections 4.2.1
and 4.2.2. If this score is greater than the score of
the candidate renaming, then the renaming is dis-
carded, i.e., its score is set to zero. In the example in
Fig. 4 the cross-checking identifies that loadNative

→ terminate is not an actual renaming, since the
method loadNative is still present in the new file.
Instead, in the example shown in Fig. 5, the cross-
check fails since neither of the entities in the older
version of the file appear in the new file and the entity
of the new file does not appear in the old file.

Entity score evaluation: For each candidate renam-
ing the scores of all possibilities are stored in p × q
entity score matrix, where p and q are the number of
old and new entities, respectively. Once such a matrix
is produced for a candidate renaming, we apply the
Hungarian algorithm to collect the assignments be-
tween the entities. Clearly, if a row (or a column) of
the score matrix contains all zero values, the related
entity is not renamed.

Fig. 8 shows the computation of the entity score
matrix for the example in Fig. 5. This is a 4× 1 entity
score matrix where only one entry has a score greater
than zero. Thus, when applying the Hungarian algo-
rithm we obtain that the best score is 3.00, i.e., the
score between STATE_INITIAL and STATE_PRE_INIT.
Therefore, REPENT concludes that STATE_INITIAL

has been renamed to STATE_PRE_INIT.

4.3 Renaming Classification

The classification process of REPENT is summarized
in Fig. 9. It entails a sequence of phases: (i) iden-
tifier splitting (Section 4.3.1), (ii) mapping of iden-
tifier terms (Section 4.3.2), and (iii) combining part
of speech and semantic analyses (Section 4.3.3). Each
phase is detailed in the following.

It is worth noting that the renaming classifier heavily
relies on tools—ontological databases such as Word-
Net [43] and natural language parsers such as the
Stanford Part-of-Speech Analyzer [53]—explicitly con-
ceived to process natural language documents rather
than source code. As pointed out by Hindle et al. [26],
such tools can be far from optimal when applied to
source code. However, at the moment they represent,
to the best of our knowledge, the most suitable tech-
nology for our purposes. In future, REPENT could be
further improved by replacing or combining WordNet
with a domain-specific ontology. For example, in their
recent work Yang and Tan [56] propose an approach
to mine semantically related words in a project or
multiple projects from the same domain. Similar work
has been done by Howard et al. [27] where the authors
mine semantically similar words across projects from
multiple domains. However, in the current status
we could not apply the aforementioned approaches,
because they would have required us to manually val-
idate all the mined semantic relations, which would
have required a deep domain knowledge for the
projects considered in our study (which we do not
have).

4.3.1 Identifier Splitting

This step aims at splitting both the old and new
names into their composing terms. REPENT uses
a Camel Case splitting algorithm. The output of
this phase is the lists of terms composing the
old name i.e., t1,1, t1,2, . . . , t1,n1 and the new name
i.e., t2,1, t2,2, . . . , t2,n2 , where n1 and n2 are the number
of terms composing the old and new names respec-
tively. For example, the identifier getChildCount is
split into get, child, and count. More sophisticated
identifier splitting approaches such as Samurai [18],
TIDIER [24], [38], Normalize [32], or LINSEN [13] can
be plugged in. However, the current implementation
of REPENT favors speed over accuracy; a Camel
Case splitter is much faster than, for example, TIDIER
[24], [38]. Moreover, previous studies found that for
Java, the identifier splitting/expansion accuracy does
not vary substantially between Camel Case and more
sophisticated approaches [38].

4.3.2 Mapping Terms

The second phase aims at mapping the n1 terms
t1,1, t1,2, . . . , t1,n1 composing the old name onto the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Scores

STATE_INITIAL

Entity score matrix
Detected renaming

Compute entity
name score matrix

STATE_INITIALIZED

STATE_STARTED

STATE_STOPED

3.00
0.00

STATE_PRE_INIT

0.00

0.00

STATE_PRE_INITSTATE_INITIAL

Candidate
renaming

score
Candidate
renaming

score
Candidate
renaming

score
Candidate
renaming

score

Fig. 8. REPENT: Filtering false positives renamings.

Fig. 9. REPENT: Renaming classification process.

n2 terms t2,1, t2,2, . . . , t2,n2 of the new name. The
mapping phase is, in turn, divided into two main
steps depicted in Fig. 10. In the reported exam-
ple REPENT must map the name getStorage onto
getMemoryBlock.

First, REPENT discovers changed and unchanged
terms plus added and deleted terms. To this aim, each
term composing the old and new names is thought of
as a source code line. In our example, the terms get,
and Storage compose the lines of the first (old) file,
while get, Memory, and Block represent the lines of
the second (new) file. Then, a diff algorithm identifies
churns of unchanged, added, removed, and changed
terms (lines) between the two versions of a name (file),
using an algorithm that solves the longest common
subsequence (LCS) problem [14]. In the example in

Fig. 10, after applying such an algorithm, the renam-
ing of getStorage to getMemoryBlock is considered
as the removal of the term Storage and the adding
of the terms Memory, and Block. The term get is
identified as unchanged.

In the second step, REPENT performs a fine-grained
analysis of changed terms (i.e., the term Storage from
the old name and the terms Memory, and Block from
the new name in the example shown in Fig. 10).
Such an analysis is based on Algorithm 1 that builds
a term-by-term mapping and classifies it. A term
t1,i of the old name is mapped onto a term t2,j of
new name according to multiple criteria, encoded in
the function matching(t1, t2, matchType). Given two
terms and a matching criterion, this function returns
true if the terms match according to the matching

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

START

END

Step 1
Find unchanged

terms

Step 2
Map and classify

terms

get
Storage

get
Memory
Block

Algorithm 1
<<Added>>

<<Same synset>>

getStorage
getMemoryBlock

diff

get
Storage

get
Memory
Block

Fig. 10. REPENT: Term mapping and classification
process.

criterion, false otherwise. Specifically, the matching is
performed using, sequentially, the following criteria:

1) Exact match: if the two terms exactly match,
e.g., get and get.

2) Case difference: if the two terms only differ by
the alphabetic letter case, e.g., Book and book.
If this does not happen, all terms are converted
into lower case letter, and the subsequent crite-
rion are matched.

3) Semantic match: if the two terms have any
semantic relation according to the upper ontol-
ogy WordNet. Words in WordNet are organized
based on their relations. Synonyms are grouped
into unordered sets, called synsets, which in turn
are related using semantic and lexical relations.
In the example reported in Fig. 10 the terms
Storage and Memory belong to the same synset.
The semantic relations considered by REPENT
are synonym, hyponym, hypernym, antonym,
meronym, and holonym. REPENT first iden-
tifies semantic relation between two mapped
terms and if there is no such semantic relation
it looks for a semantic relation between words
in the synsets of the two mapped terms. This
process repeats for up to three synsets of each
word in the synsets of two mapped terms. For
example, when looking if an antonym relation
exists between two terms, REPENT first checks
if there is an antonym relation. However, if this
is not the case, REPENT further analyzes their
respective synsets for antonym relation between
two words, each belonging to the synset of the
original terms. If an antonym relation is found, it

will be considered as a relation of level 1. In the
opposite case, i.e., no relation is found, REPENT
further looks for antonym relation between the
words of the synsets of the synsets, i.e., by doing
a transitive closure up to level 3.

4) Is stem: if the two terms have the same stem
according to the Porter [45] stemming. This
rule is applied only if the semantic match rule
fails. Indeed, if both terms are defined in Word-
Net, e.g., synchronization and synchronizing,
then they will be related according to the se-
mantic match. If any of the two terms is not
defined in WordNet, as it is the case of invoc

from the identifier renaming invocationType→
invocType, then the rule is stem is applied.

Algorithm 1 builds a mapping of terms of the old
name onto any (not yet mapped) term of the new
name, repeatedly traversing the terms of the new
name, moving from the position of the term of the
old name and using the above matching criteria, in
the order in which they are mentioned.

After the term mapping has been performed, RE-
PENT identifies mapped terms on which the renam-
ing classification will focus, i.e., all mapped terms
that are not trivially mapped according to the exact
match criterion. For example, in the identifier renam-
ing getStorage → getMemoryBlock, both identifiers
contain get that is an exact match and thus is
removed from further consideration.

After terms of the old name have been mapped
onto terms of the new name, REPENT classifies the
renamings at term level, as:

1) Removed: terms of the old name not mapped
onto any term of the new name are classified as
removed, as it is the case for the term statement

from the identifier renaming statementLength

→ length.
2) Added: terms of the new name not mapped onto

any term of old name are classified as added. In
the example reported in Fig. 10 the terms Block
is identified as an added term.

3) Matched: terms of the old name mapped onto
terms of the new name according to Algorithm
1 with an exact match, e.g., the term get in the
example reported in Fig. 10.

4) Change case: terms of the old name mapped
onto terms of the new name according to Al-
gorithm 1 with a case difference match, as this
is the case for the term jar from the renaming
pJARFile → jarFile.

5) Related: terms of the old name mapped onto
terms of the new name according to Algorithm 1
with a semantic match or a is stem match. In the
example reported in Fig. 10 the terms Storage

and Memory are classified as related since there

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

foreach matchType in (exact, case difference,
semantic, is stem) do

for x← 1 to n1 do
if not mapped1[x] then

y1← x, y2← x ;
while y1 > 0 or y2 ≤ n2 do

foreach y in (y1, y2) do
if matching(t1,x,t2,y , matchType)
and not mapped2[y] and y > 0 and
y ≤ n2 then

mapped1[x]← y ;
mapped2[y]← x ;

end
end
y1−−, y2 + + ;

end
end

end
end
Algorithm 1: Algorithm for mapping and classifying
the n1 terms of the old name onto the n2 terms
composing the new name.

exists a semantic relation (synonym) between
them.

REPENT uses the mapped terms to classify the re-
naming in dimension forms of renaming as follows:

Simple: when only one term is added, removed, or
changed.

Complex: when more than one terms are added, re-
moved, or changed.

Formatting only: the following two conditions hold:
(i) all term mappings are matched and/or change
case and (ii) the two identifiers are the same when
underscore and camel case are ignored.

Term reorder: the following two conditions hold: (i)
at least two terms of the old identifier are matched
to two terms in the new identifier while possibly
changing case and (ii) the two identifiers are not the
same when underscore and camel case are ignored.

REPENT refines related matches via WordNet to
find semantic relations between terms, i.e., synonymy,
hyponymy, hypernymy, antonymy, meronymy, or
holonymy and can thus classify the renaming in
dimension semantic change as synonymy, specialization,
generalization, opposite, or whole-part when the corre-
sponding relation exists.

If no semantic relation is found REPENT
checks whether there is a spelling error
correction/introduction. REPENT assumes there
is a spelling error if the following three conditions
hold: (i) one of the two terms does not exist in
WordNet but the other does, (ii) there is only small
(string) difference between the two (Levenshtein

distance is 2 or smaller—see Appendix B.2 for a
discussion on the threshold value), and (iii) one term
is not included in the other (to avoid misclassifying
renamings such as frame → jframe).

Finally, if the previous checks fail, REPENT checks if
there is an abbreviation/expansion. It assumes abbrevia-
tion/expansion if the following two conditions hold:
(i) one of the two terms does not exist in WordNet
but the other does and (ii) all characters of one are
contained in the other.

4.3.3 Combining Part of Speech and Semantic Anal-
yses

In natural language, a word carries a specific mean-
ing. Words are often grouped into phrases which in
turn can be combined to form sentences. The mean-
ing carried by a phrase can narrow, generalize, or
change the meaning of an individual term within the
phrase. By analogy with natural language, to grasp
the meaning of an identifier, one cannot rely only
on the terms constituting the identifier in isolation.
For example, the term visible (from the identifier
JavadocNotVisibleReference) and the term hidden

(from the identifier JavadocHiddenReference) have
opposite meaning, whereas the identifiers have the
same meaning.

Thus, after terms are mapped between the old and
new name, REPENT explores the relations between
the terms within the same identifier to classify identi-
fier renamings. REPENT builds a synthetic sentence
out of the identifier, then it performs a part of speech
analysis.

As identifiers do not always follow well-formed gram-
matical structure, before applying part of speech anal-
ysis using natural language tools we apply a sentence
template. Different templates have been proposed in
the literature by Abebe et al. [3] and Binkley et al. [7].
For all kinds of entities, except methods, REPENT
applies the List Item Template by Binkley et al. [7].
Indeed, they provided evidence that this template out-
performs the other three templates they evaluated. For
the identifier inclusionPatterns the template pro-
duces inclusion patterns. However, if the first term is a
verb, as it is suggested according to Java standard for
method names, REPENT uses a different template,
i.e., the verb template: “Try to <identifier terms>”. A
template is just an aid provided to the part of speech
tagger to guide its analysis; thus for the method
name markAsDefinitelyUnknown, REPENT applies
the verb template on the term sequence, i.e., Try to
mark as definitely unknown.

REPENT part of speech analysis uses the Stanford
Part-of-Speech Analyzer7. The Stanford NLP classifies

7. We will refer to it as the Stanford NLP.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

terms using the Penn Treebank Tagset [42], thus not
only distinguishing between nouns, verbs, adjectives,
and adverbs, but also distinguishing between the
different forms. From this step beyond, we use the
part of speech of each term—i.e., whether it is a
noun, being it singular or plural, an adjective, an
adverb, etc.—and the relations between terms. More
precisely, we are interested in the following rela-
tions: negation modifier (i.e., the relation between a
negation word and the word it modifies, as in the
identifier ignoreNotFoundField), adjectival modifier
(i.e., a modifier relation between an adjective and a
noun, meaning that the adjective specifies the noun, as
in the identifier binaryField), and noun compound
modifier (i.e., a modifier relation between two nouns,
meaning that one noun specifies the other, as in the
identifier methodSignature).

Given a renaming pair, old and new names, REPENT
processes the two part of speech analyses and uses
heuristics to assign a semantic label to the renaming.
The heuristics work as follows:

Synonym phrase: when the following two conditions
hold: (i) there exists a term mapping where the two
terms hold an antonym relation and (ii) one of the
two terms is involved in a negation modifier relation.

Opposite phrase: when one of the following two con-
ditions holds: (i) a negation modifier relation is
added/removed while the modified term exists in
both identifiers or (ii) a term renaming towards a
synonym is accompanied with an addition/removal
of a negation modifier relation.

Specialization phrase: when the following two condi-
tions hold: (i) a term is added and (ii) it participates
in a modifier relation, either adjectival or noun, with
an already existing term.

Generalization phrase: when the following two condi-
tions hold: (i) a term is removed and (ii) a modifier
relation between the removed term and a term exist-
ing in both identifiers is also removed.

Whole-part phrase: when more than one term mapping
pair holds a whole-part relation.

Add meaning: when the following two conditions hold:
(i) there exists a term mapping that is classified as
term added, and (ii) the added term is not the modi-
fier of another term in the new identifier.

Remove meaning: when the following two conditions
hold: (i) there exists a term mapping that is classified
as term removed, and (ii) the removed term is not the
modifier of a term in the old identifier.

Unrelated: when a term mapping does not fall into any
of the levels of semantic change.

Part of speech change: when the part of speech of two
mapped terms are different.

TABLE 2
Characteristics of the analyzed programs.

Program Analyzed KLOCs Files File Committers
period (range) (total) revisions

ArgoUML 1998-2012 1-20 300 68,400 42
dnsjava 1998–2011 9-35 365 1,415 2
Eclipse-JDT 2001–2006 2,089–6,949 5,758 54,571 50
JBoss 1999–2011 2,000-1,200 40,003 25,028 422
Tomcat 1999–2006 5–315 12,205 46,498 79

In the next two sections we discuss in detail two
studies. The goal of the first study is to evaluate
the accuracy of the renamings detected by REPENT
(Section 5), while the second study is an exploratory
study investigating the classification of the detected
renamings with respect to the proposed taxonomy
(Section 6).

5 EVALUATING REPENT DETECTION AC-
CURACY

This section reports the results of an empirical study
conducted to evaluate the accuracy and complete-
ness of REPENT renaming detection. The goal of
this study is to analyze the detection accuracy of
REPENT with the purpose of investigating to what
extent undocumented renamings can be identified.
The perspective of the study is that of researchers,
who are interested in investigating how REPENT is
suitable to identify renamings. The evaluation has
been carried out in the context of the source code
history of five Java open-source programs, namely
ArgoUML, dnsjava, Eclipse-JDT, JBoss, and Tomcat.
ArgoUML8 is a UML modeling tool. dnsjava9 is a
Java Domain Name System (DNS) implementation.
Eclipse-JDT is a set of plug-ins that adds the capa-
bilities of a full-featured Java IDE to the Eclipse10

platform. JBoss AS11, in the following simply referred
to as JBoss, is a Java application server. Tomcat12 is an
implementation of a servlet container and Java Server
Page (JSP) engine.

Table 2 reports the main characteristics of the an-
alyzed programs: the analyzed time periods, size
ranges in KLOCs, numbers of Java files, numbers
of analyzed revisions, and numbers of committers.
ArgoUML and Eclipse are versioned under CVS,
while all other programs are versioned under SVN.
The analyzed programs cover different domains while
sizes, numbers of files as well as numbers of analyzed
versions are spread fairly evenly in a broad range of
small, medium and large programs.

Table 3 reports the total user time needed by REPENT
to detect renaming throughout the evolution history

8. http://argouml.tigris.org
9. http://www.xbill.org/dnsjava
10. http://www.eclipse.org
11. http://www.jboss.org/jbossas
12. http://tomcat.apache.org

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

TABLE 3
REPENT time of detection.

Program Total time Average time for 2
(min) revisions of a file (sec)

ArgoUML 113 0.23
dnsjava 11 0.14
Eclipse-JDT 561 0.33
JBoss 780 0.47
Tomcat 117 0.21

of the five projects (hardware: 16 Intel(R) Xeon(R)
CPUs @2.40GHz). This time is purely indicative, as
the proof of concept detector has not been optimized
to reduce the required time. A single file revision
requires a very short time (third column of Table 3),
which permits the on-line use of the detector. By
contrast, a complete analysis of a system evolution
history should be performed offline since it may
require hours.

The following subsections detail the procedure and
results of the accuracy evaluation of REPENT, in
particular we discuss precision and recall.

5.1 Research Questions and Study Procedure

To evaluate the accuracy of REPENT, we address the
following two research questions:

RQ-DP: How accurate is the set of renamings detected by
REPENT? This research question aims at estimating
the accuracy of the detection approach, measured in
terms of precision. Since Section 6 presents an em-
pirical study on how developers rename identifiers,
precision indicates the accuracy of the renamings used
in such a study.

RQ-DR: How complete is the set of renamings detected by
REPENT? This research question aims at estimating
the completeness, measured in terms of recall, of RE-
PENT with respect to the set of renamings performed
by the developers of the analyzed programs. Recall
gives an estimate of the representativeness of the
analyzed renamings reported in Section 6.

The following subsections detail how we evaluate the
accuracy of REPENT.

5.1.1 Evaluating the Precision of the Detection Ap-
proach: Manual Validation

Precision is computed by manually validating a sam-
ple of renamings from the analyzed programs.

We reuse the oracle built from our previous work,
i.e., manually validated renamings for Tomcat, to cal-
ibrate thresholds (see Appendix B.1). We then eval-
uate the approach on all programs by validating a
statistically representative sample for each. Sampling
separately for each program allows us to evaluate

the detection also on programs with low number
of renamings (e.g., dnsjava), which otherwise would
have less chances to be selected (e.g., with respect to
JBoss) if the total population was considered.

To estimate the size of the representative samples we
choose a confidence level of 95% and a confidence
interval of ±5% [49]. Thus, we can be 95% sure
that the precision of the approach on the detected
renamings for each program will be the precision
estimated for the sample ±5%.

Once the sample sizes have been determined, we use
a stratified random sampling to select the renamings
to be validated. This means that for each program
we first group renamings based on the kind of en-
tity being renamed, i.e., the first dimension of our
taxonomy (e.g., type, method). Then, we estimate the
proportion of each group with respect to the total
population of detected renamings for that particular
program and we use the same proportion for the
sample. For example, if type renamings are 5% of the
total population of detected renamings in ArgoUML,
5% of the sample must be type renamings. Finally,
we randomly select the sample for each group. The
sample size and the number of detected renamings
are reported in Appendix C.1. The advantage of
using stratified random sampling is in ensuring that
all groups are represented [8]. If random sampling is
used instead, the chances that a package renaming is
selected for validation for Eclipse-JDT for example are
almost zero (4 over 12,557).

The manual validation was conducted as follows. For
each chosen detected renaming, two of the authors
of this paper independently inspected the source
code of both versions of the file between which the
entity was renamed. All available details (comments,
uses, neighboring entities) contributed to the decision-
making. Then, each author marked the renaming
as true positive (TP) or false positive (FP). In all
cases in which the two authors provided a different
classification for the renaming, the inconsistency was
discussed and solved. When needed, a third author
also reviewed such candidate renamings in which
case the classification was obtained by a majority vote.
Whenever the lack of knowledge prevented us from
taking a decision, the renaming was removed and
replaced by a new one; the process was iterated up to
the required sample size.

Finally, the precision is computed as the fraction of
detected renamings in the validated sample that the
authors of this paper classified as TP. In other words,
given the subset of detected renamings sampled for
validation, TPS the set of those classified as true
positives, and FPS the set of those classified as false

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

positives, the precision Pr is given by:

Pr =
|TPS|

|TPS|+ |FPS|

5.1.2 Evaluating the Recall of the Detection Ap-
proach: Comparison with Documented Renamings

To evaluate the recall, ideally one should have the
knowledge of all actual renamings that occurred in
a program. Unfortunately, such information is not
available for open-source programs. However, there
are (relatively few) cases in which developers docu-
mented renamings in the versioning system commit
notes. Hence, we estimate the recall as the proportion
of such documented renamings also detected by RE-
PENT.

To identify documented renamings, we filter the com-
mit logs and consider only the commits whose note
contain the keyword “renam”. Then, we complement
the automatic filtering with a manual analysis of the
identified commit notes, with the aim of pruning
out false positives. Typical cases of false positives
are the commits in Eclipse-JDT related to changes to
the refactoring feature, which includes a renaming
feature. Other false positives are related to renaming
of files not containing source code, e.g., images or
documentation files. Then, we analyze the source code
of the files involved in the documented renaming
to locate renamed entities, and hence verify whether
such renamings are detected by our approach. Hence,
given DCR, the set of documented renamings iden-
tified as described above and DR the set of detected
renamings, the recall Rc is the proportion of docu-
mented renamings that are also detected by REPENT:

Rc =
|DR ∩DCR|
|DCR|

5.2 Analysis of the Results

This section analyzes the results achieved aiming at
answering our research questions RQ-DP and RQ-
DR.

5.2.1 RQ-DP: How accurate is the set of renamings
detected by REPENT?

Table 4 reports, for the analyzed programs, the preci-
sion of REPENT computed for each kind of entity as
well as for the overall sample of renamings.

Overall, we observed an average precision of about
88%, as expected slightly lower than the one com-
puted when calibrating the thresholds (about 92%, see
Table 15). The number of detected package renamings
is very low, thus at most 1 package renaming was

TABLE 4
Estimated precision Pr for renaming detection of

different entities (95% ±5 confidence).

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package 0% - 100% 100% - 67%
Type 100% 100% 100% 100% 100% 100%
Constructor 100% 100% 100% 100% 100% 100%
Field 100% 93% 95% 94% 73% 93%
Method 100% 98% 94% 94% 93% 94%
Getter/Setter 100% 83% 97% 96% 79% 90%
Parameter 90% 54% 92% 87% 67% 76%
Local variable 95% 86% 93% 84% 90% 92%
Overall 97% 78% 94% 91% 80% 88%

TABLE 5
Comparison with documented renamings.

Program Files Documented
involved renamings

ArgoUML 77 4
dnsjava 113 229
Eclipse-JDT 140 52
JBoss 146 50
Tomcat 66 2

sampled per program, which results in a 0% or 100%
precision and explains the lowest precision reported
in Table 4, i.e., 67% for package renamings. REPENT
has a somehow low precision—compared to the rest
of the entity kinds—for parameters renamings (76%).
The set used to calibrate the thresholds may not have
a sufficiently large set of parameter renaming and
thus thresholds may need to be recalibrated. The ac-
curacy of REPENT may also be impacted by methods
not being called in the program, or getters/setters
automatically generated and again not used. In such
cases REPENT relies on the fixed DST string match-
ing threshold. Higher values may improve precision
but again at the cost of recall.

5.2.2 RQ-DR: How complete is the set of renamings
detected by REPENT?

Table 5 reports the number of files involved in
the commits whose log message suggest possi-
ble renamings. Documented renamings refer to
the number of renamings that we found in
the files committed with the log messages that
were either documenting a renaming in a vague
manner (e.g., “renamed some stuff”) or explicitly
(e.g., “rename Name.fromStringNoValidate(String) to
Name.fromStringNoException(String)”).

Table 6 reports—for each kind of entity—the detected
proportion of documented renamings. We conclude
that although sometimes renamings are documented,
this is not a general rule. This result further motivates
the use of REPENT as a renaming re-documentation
tool. Table 6 also shows that documented renamings
often pertain to types and, thus, to constructors.

For ArgoUML, the number of documented renamings
is very low. We detect three out of four renamings. The
renaming our approach fails to detect is a complex

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

TABLE 6
Detected documented renamings and recall Rc of different entities.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package - - 100% (1/1) - - 100% (1/1)
Type - 94% (58/62) 18% (4/22) 95% (20/21) - 78% (82/105)
Constructor - 100% (134/134) 100% (4/4) 95% (18/19) - 99% (156/157)
Field 100% (1/1) 100% (4/4) 100% (3/3) 100% (1/1) - 100% (9/9)
Method - 100% (1/1) 100% (7/7) 100% (5/5) - 100% (13/13)
Getter/Setter 67% (2/3) - - 100% (2/2) 100% (2/2) 86% (6/7)
Parameter - 100% (28/28) 100% (7/7) - - 100% (35/35)
Local variable - - 88% (7/8) 100% (2/2) - 90% (9/10)
Overall 75% (3/4) 98% (225/229) 63% (33/52) 96% (48/50) 100% (2/2) 92% (311/337)

combination of renaming and refactoring activities,
where the renamed getter method was abstract in the
old version and became a concrete method in the new
version. Also, the field associated with the getter was
moved from the superclass to a subclass.

In Tomcat there are only two documented renamings
and REPENT detects both of them.

For JBoss, REPENT only fails to identify two docu-
mented renamings, i.e., one class and one constructor.
Both entities are defined in the same file and the
file was renamed as well. REPENT misses these
renamings as the difference between the original and
renamed files is greater than the 60% relative thresh-
old for detecting renamed files.

For Eclipse-JDT, REPENT fails to identify one lo-
cal variable and 18 class renamings. mainly because
Eclipse-JDT used (for the analyzed period) CVS.
Therefore, as explained in Section 4, we grouped
commits using the heuristic of Zimmermann et al. [57]
However, sometimes commits belonging to the same
change occur in different days and developers do
not always use consistent commit notes. As a con-
sequence, REPENT fails to identify some file renam-
ings.

Finally, dnsjava was (surprisingly) the program con-
taining the highest number of documented renamings,
despite being the smallest one. In this case, our ap-
proach detected 98% of the documented renamings,
i.e., it fails to detect only four class renamings. These
classes have no def-uses. Although REPENT detects
these class renamings as candidate renamings, it filters
them as false positive, since their similarities are
less than the declaration similarity threshold for type
renamings (see Table 15).

Table 7 summarizes REPENT precision and recall.
The first column reports the data set used for the
evaluation; the second column corresponds to the size
of the data set (i.e., numbers of renamings); the last
column reports the measures. Precision was evaluated
over a representative sample from the detected renam-
ings while recall was evaluated with respect to re-
namings documented by developers. The documented
renaming set is extracted from the repository of the

TABLE 7
REPENT precision and recall.

Data set Size Accuracy (measure)
Sample over detected renamings 1723 88% (Pr)
All documented renamings 337 92% (Rc)

programs under analysis. Although its size is not as
large as the sample used to evaluate the precision, it
is an unbiased oracle as the entries are reported by
the developers.

REPENT detection accuracy: Overall, we found
that REPENT reaches high precision (88%) and
recall (92%) thus being suitable for most of the
foreseeable tasks.

6 REPENT IN ACTION: HOW RENAMINGS
FOLLOW THE TAXONOMY

The goal of this study is to use REPENT to analyze
renamings over the evolution history of software pro-
grams with the purpose of investigating to what extent
such renamings fall into the dimensions defined in the
taxonomy of Section 3. The perspective of the study is
that of researchers who are interested in investigating
how identifiers are renamed in the same context as the
study reported in Section 5.

6.1 Research Questions and Study Procedure

This empirical study aims at automatically detecting
and classifying renamings in the five programs de-
scribed in Table 2.

Since we use REPENT to identify renamings, we
analyze the classification accuracy of REPENT to
evaluate to what extent the classification of renamings
with respect to our taxonomy is affected by the per-
formance of REPENT, thus answering the following
research question:

RQ-CP: How accurate is the set of renamings classified by
REPENT? This research question aims at providing
an estimate of the accuracy of the classification, mea-
sured in terms of precision. Such an estimate indicates

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

the accuracy of the results of this exploratory study,
reported in Section 6.2.

While the focus of the previous research questions
is to evaluate the reliability of REPENT as a tool to
detect and classify identifier renamings, the following
research questions are the core of this study, i.e., they
study the renaming phenomenon using the taxonomy
defined in Section 3. For each dimension of the tax-
onomy, we investigate to what extent renamings of
the five programs fall into the different levels of the
dimension.

RQ1: To what extent do renamings occur with respect to
the different kinds of entities? Specifically, we compute
the number and proportion of renamings occurring
for package, type, constructor, method/getter/setter,
field, parameter, and local variable names to investi-
gate which entities are more prone to be renamed.

RQ2: What kinds of changes occur to terms composing
identifiers when these are renamed? In other words, we
compute the number and proportion of simple, com-
plex, formatting only, and term reordering renamings
to investigate which forms are more frequent.

RQ3: What kinds of semantic changes occur in identifiers
when they are renamed? In other words, we compute the
number and proportion of renamings that preserve,
change, narrow, broaden, add, and remove meaning
to study how the renamings of the five programs
are distributed over the different levels of semantic
change.

RQ4: What kinds of grammar changes occur in identifiers
when they are renamed? Specifically, we investigate to
what extent the renamings imply changes to nouns
(singular/plural), to verb conjugations, or other part
of speech changes.

In order to find answers to our research questions, we
investigate—from both a quantitative and qualitative
point of view—how identifier renamings detected in
the studied programs follow the taxonomy of Sec-
tion 3.

6.1.1 Evaluating the Precision of the Classification
Approach: Manual Validation

To evaluate the accuracy of the renaming classification
we extract, for each level of each dimension of the
taxonomy, a representative random sample ensuring
a confidence interval of ±10% for a confidence level
of 95%. This is different from the sampling in Sec-
tion 5 where the sample is representative for each
program stratified over the kinds of entities. Here,
the confidence level and interval criteria are met for
each level and each dimension of the taxonomy for
the total population of classified renamings. For the
semantic change dimension this means a representative

number of expansions, a representative number of
abbreviations, etc.

6.2 Analysis of the results

In this section we first discuss how accurately RE-
PENT classifies renamings (Section 6.2.1), then, in
Sections 6.2.2 to 6.2.5, we discuss how the renamings
of the five programs that we studied follow the tax-
onomy defined in Section 3, e.g., to what extent those
renamings preserve meaning or consist of changes that
are formatting only.

6.2.1 RQ-CP: How accurate is the set of renamings
classified by REPENT?

We manually analyzed a sample of the classified
renamings to evaluate in how many cases REPENT
correctly or wrongly classified the changes in the
identifiers. In addition, when REPENT fails to cor-
rectly classify a change we further investigate the
reason. The sample size and the number of correctly
classified renamings for each dimension of taxonomy
are reported in Tables 18 to 20 in Appendix C.2.

With respect to the classification of forms of renaming,
REPENT has an overall precision of 98% (see Table
18). The few misclassified cases are due to wrong term
mapping.

For the classification of semantic changes, REPENT
exhibits an accuracy of 80% (see Table 19). REPENT is
very accurate in classifying renamings that add or re-
move meanings, 82% and 91% respectively. REPENT
is also accurate in classifying renamings that preserve
the meaning (overall precision of 93%). The lowest
accuracy is achieved by REPENT when classifying
renamings as narrow and broaden meaning, 62% and
69% respectively. Wrongly classified renamings in the
category of semantic changes are due to wrong split-
ting, wrong term mapping, or wrong relations be-
tween terms. We also observed cases where REPENT
misclassified a renaming because of the ontological
database. For example, WordNet infers a hyponym
relation between “is” and “get” and an antonym
relation between “long” and “short”. Those relations
are not valid in the context of Java where in many
cases “is” and “get” are used for accessors of boolean
attributes and where “long” and “short” are primitive
types. Approaches by Yang and Tan [56] and Howard
et al. [27] can be used to improve the classification of
semantic changes.

The classification accuracy of REPENT when classify-
ing grammar changes is 74% (see Table 20). REPENT is
accurate in classifying changes of nouns from singular
to plural (and vice versa) and changes in verb conjuga-
tion, i.e., the precision is 100% and 79% respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20

TABLE 8
Renamed entities identified by REPENT.

Package Type Field Constructor Method/Getter/Setter Parameter Local variable Total
ArgoUML 0 18 2,156 16 391 690 712 3,983
dnsjava 0 67 58 159 219 448 144 1,095
Eclipse 4 180 1,942 139 3,205 3,218 3,845 12,533
JBoss 7 656 1,805 475 3,985 3,406 3,247 13,581
Tomcat 0 69 478 48 830 507 428 2,360
Total 11 990 6,439 837 8,630 8,269 8,376 33,552

Moreover, REPENT is very accurate where there is
no grammar change (100%). By contrast, REPENT
performances are fairly low (20% of precision) in clas-
sifying changes in other part of speech changes. Most
of these cases are mainly due to the Stanford NLP not
being accurate when parsing source code identifiers.
In a very recent work, Gupta et al. [25] proposed
an approach for part of speech tagging of source
code identifiers and showed that the approach parses
identifiers 10% to 20% more accurately. Unfortunately,
at current date, the source code identifier tagger is not
publicly available. However, it could be integrated in
REPENT to improve its performances. Other reasons
for misclassification were incorrect splitting or incor-
rect term mapping.

REPENT classification accuracy: REPENT al-
most perfectly classifies forms of renamings
(98%) and classifies reasonably well semantic
changes (with an accuracy of 80%). The lowest
performance is on the classification of grammar
changes (with an overall accuracy of 74%).

6.2.2 RQ1: To what extent do renamings occur with
respect to the different kinds of entities?

Table 8 and Fig. 11 report the number and propor-
tion, respectively, of renamings occurring for package,
type, field, constructor, method/getter/setter, param-
eter, and local variable names13.

The entities that are more prone to be renamed are
methods, parameters, and local variables. Generally,
such changes reflect the evolution of the programs.
Indeed 89% of the surveyed developers confirm that
they rename while changing functionality. As an
example in JBoss, REPENT identified that the param-
eter webserviceClientDeployer has been renamed
to webservicesClient. The renaming was performed
to reflect a change in the functionality, as confirmed
by the log message: decouple WebserviceClientDeployer
from JSR109ClientService.

There is a large number of field renamings in Ar-
goUML. In this program, REPENT identified 2,156

13. For the classification of renamings we only considered the TP
renamings from the validated sample, thus the number of classified
renamings is lower than the number of detected renamings .

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ArgoUML	
 dnsava	
 Eclipse-­‐JDT	
 JBoss	
 Tomcat	

Package	
 Type	
 Field	
 Constructor	
 Method/GeLer/SeLer	
 Parameter	
 Local	
 variable	

Fig. 11. Proportion of renamed entities identified by
REPENT.

field renamings, representing about 54% of the re-
namings. About 67% of the field renamings consisted
solely of underscore removal in the beginning of
the field, i.e., renaming away from the Hungarian
notation. Finally, 11% of the field renamings were
performed due to the third party library that Ar-
goUML uses for logging purposes, i.e., Log4J. The
class org.apache.log4j.Category was deprecated
and users of the library were supposed to use class
org.apache.log4j.Logger instead. As a result, fields
were renamed from cat to LOG or logger.

Finally, 448 out of 1,095 of the renamings in dns-
java were performed on method parameters due to
massive renaming activities that heavily changed the
API and hence the method parameters. Also, a con-
siderable number (20%) of the parameter renamings
consisted solely in removing a leading underscore.
Conversely, in 52% of the parameter renamings (all
being renamed in the same revision) a leading under-
score was added. In addition, the majority of those
parameters was renamed following the same pattern:
names starting with the letter r were renamed to start
with underscore. Examples of those include rname →
_name, rclass → _dclass, and rtype → _type. All
those renamings were performed as part of “The big
rewrite...” in class Record, a generic resource record,
or in one of its many subclasses. About 6% of the
parameter renamings were performed on parame-
ters of type DataByteOutputStream where the name
changed from dbs to out.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21

TABLE 9
Forms of renamings identified by REPENT.

Simple Complex Formatting only Term reordering Total
ArgoUML 1,787 493 1,702 1 3,983
dnsjava 894 85 116 0 1,095
Eclipse-JDT 7,910 4,456 132 35 12,533
JBoss 8,094 4,786 655 46 13,581
Tomcat 1,638 658 58 6 2,360
Total 20,323 10,478 2,663 88 33,552

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

ArgoUML	
 dnsjava	
 Eclipse-­‐JDT	
 JBoss	
 Tomcat	

Simple	
 Complex	
 FormaKng	
 only	
 Term	
 reordering	

Fig. 12. Proportion of forms of renamings identified by
REPENT.

RQ1 conclusion: Renamings occur mostly for
method, parameter, and local variable names,
with 26%, 25%, and 25% of the renamings re-
spectively. Field renamings represent also a large
proportion of the renamings—close to 20%. Fi-
nally, type renamings, which in Java imply con-
structor renamings, as well as package renam-
ings, represent a small proportion of the renam-
ings (less than 3% each for type and constructor
renamings, less than 1% for package renamings).

6.2.3 RQ2: What kinds of changes occur to terms
composing identifiers when these are renamed?

Table 9 reports the forms of identified renamings by
REPENT, while Fig. 12 shows the proportion of the
different forms. Most of the renamings were classified
as simple renamings, where developers renamed a
single term. In Eclipse-JDT, JBoss, and Tomcat, there
is a considerable number of complex renamings while
this form of renamings is not so frequent in the other
two programs.

In ArgoUML, a substantial number of renamings
is consist of formatting only—43% of the identified
renamings. The analysis of this form of renamings
indicates that in 77% (1,314 out of 1,702) of the cases,
the renaming relates to the removal of leading un-
derscores from identifiers, i.e., towards Java naming
conventions, which recommend not to start identifiers
with underscore. However, in 2% (35 out of 1,702) of
those renamings, a leading underscore was added to
identifiers, hence, against Java naming conventions.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ArgoUML	
 dnsjava	
 Eclipse-­‐JDT	
 JBoss	
 Tomcat	

Preserve	
 meaning	
 	
 Change	
 in	
 meaning	
 Narrow	
 meaning	
 Broaden	
 meaning	

Add	
 meaning	
 Remove	
 meaning	
 None	

Fig. 13. Proportion of semantic changes identified by
REPENT.

These results go along with the opinion of surveyed
developers—when the name of an entity does not
follow the language naming conventions, 34% would
definitely rename while 46% would probably rename.

REPENT identified only a few renamings (88 of the
classified renamings) that were performed to change
the order of terms. One may expect that term reordering
involves entities with limited scope, thus limiting the
impact of the renaming. However, in the analyzed
renamings only 15% of such re-orderings involved
local variables. We conjecture that developers tend
to reorder terms to improve the comprehensibility
of the identifier and avoid misunderstanding. For
example, in JBoss a developer changed a method
parameter name from serviceDest to destService,
to clarify that the parameter contains the address of
the destination service.

RQ2 conclusion: The majority of renamings
(61%) are simple renamings, i.e., only one term
of the identifier is renamed. In a considerable
number of the renamings (31%) multiple terms
are changed simultaneously. Less often (8%),
renamings consist only of formatting changes.
Even less often are those renamings where the
terms of the identifiers were reordered.

6.2.4 RQ3: What kinds of semantic changes occur in
identifiers when they are renamed?

Table 10 reports the number of semantic changes iden-
tified by REPENT while Fig. 13 shows the proportion
of semantic changes.

Renamings that preserve meaning are quite unusual
in the analyzed programs. Table 11 shows detailed
results for this category of renamings. There is a
number of renamings classified as spelling error. As
expected, most renamings correct spelling errors
while only a small number introduce spelling errors.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22

TABLE 10
Semantic changes identified by REPENT.

Preserve meaning Change in meaning Narrow meaning Broaden meaning Add meaning Remove meaning None Total
ArgoUML 77 1,311 97 59 789 441 1,661 4,435
dnsjava 12 576 62 24 79 312 112 1,177
Eclipse 413 5,522 1,297 1,104 4,481 3,750 122 16,689
JBoss 580 6,042 1,130 851 4,884 4,198 564 18,249
Tomcat 259 1,061 186 138 731 628 35 3,038
Total 1,341 14,512 2,772 2,176 10,964 9,329 2,494 43,588

TABLE 11
Preserve meaning renamings as classified by

REPENT.
Synonym Synonym Spelling error Expansion Abbreviation Total

phrase correction/introduction
ArgoUML 10 0 12 44 11 77
dnsjava 0 0 1 9 2 12
Eclipse 163 1 137 61 51 413
JBoss 195 2 180 84 119 580
Tomcat 185 0 34 11 29 259
Total 553 3 364 209 212 1,341

301 out of the 364 spelling error renamings are
simple renamings indicating that spelling errors
are corrected in isolation. Some renamings aim
at correct spelling errors but even after multiple
corrections, the identifiers still contain spelling
errors (e.g., defferedSyntaxAllowedAsLitteral

→ deferedSyntaxAllowedAsLitteral →
deferedSyntaxAllowedAsLiteral) because only
few available IDEs (e.g., EMACS, ECLIPSE) provide
support for spell-checking of identifiers.

We expected that renamings towards expansions
would be performed for clarification purposes,
e.g., getAlg→ getAlgorithm. 56% of such expansions
concern local variables, which indicates that entities
with limited scope are also important and developers
take care of them. However, the overall number of
renamings towards expansions is low (209): 49% of the
surveyed developers would probably not undertake
a renaming if the name of an entity contains an
abbreviation or an acronym; 7% would definitely not
rename; 30% were undecided; and only 13% would
probably rename. As for abbreviations, we expected
that abbreviation renamings would occur when identi-
fiers are long and are composed of many terms. Yet,
in more than 75% of such renamings, the old names
are composed of only one or two terms. For example,
the parameter parameters in JBoss was renamed
to params, while the local variable association in
ArgoUML was renamed to assoc.

REPENT identified 3 cases of synonym phrase.
Two fields were renamed from NOT_CLOSED to
OPEN; the third renaming is a false positive. We
also manually found an example in Eclipse-JDT,
where javadocNotVisibleReference was renamed
to javadocHiddenReference. REPENT failed to cor-
rectly classify this renaming because the Stanford NLP
wrongly assigns the negation relation (due to the term
Not) to the term javadoc instead of assigning it to the
term Visible.

Renamings that change meaning are the most frequent.
In general, 33% of the renamings aim at changing
the meaning of the identifiers. Such renamings are
particularly frequent in dnsjava—48% of the seman-
tic changes. As explained in Section 6.2.2, dnsjava
underwent a massive renaming (e.g., rname becomes
_name). Those cases are classified as change meaning
as REPENT fails to relate the meaning of the two
terms due to the non-use of separator in the case of
rname. Here, REPENT would benefit from a more
sophisticated splitting technique that would split the
identifier into two terms, i.e., r and name. ArgoUML
also underwent a massive renaming activity, due to
the use of Log4J as explained in Section 6.2.2. While
in the context of ArgoUML, REPENT classifies such
renamings as change in meaning, we suspect that for
the developers of the third-party library (Log4J) the
terms Category and Logger have the same meaning,
the former being a superclass of the latter. If this is
indeed the case, a domain dictionary would improve
the classification.

Table 12 shows the results of change meaning re-
namings at a fine-grained level—according to the
proposed taxonomy. In general, there is no se-
mantic relationship, i.e., unrelated according to tax-
onomy, between the renamed terms in this cate-
gory. As an example, in ArgoUML, REPENT iden-
tified that a parameter name was changed from
eventNames to propertyNames to reflect the new
semantics of the parameter. However, although
quite rare, there are cases where the developers
inverted the responsibility of an entity, e.g., in
JBoss REPENT identified that a method name was
changed from isInvisibleAnnotationPresent to
getVisibleAnnotation to reflect the new behavior of
the method. REPENT identifies only two identifiers
where the names changed from body to node, i.e., re-
namings where the semantic change is a whole-part
phrase. This type of renaming is less likely to occur.

Particularly interesting are renamings that involve
identifiers that contain a negation. Such identifiers
are usually renamed towards positive names; this
is a particular example of opposite phrase renamings
identified by REPENT. For example, in Eclipse-JDT
the method isNotPrimitiveType was renamed to
isPrimitiveType and the local variable dontSetFigs
of ArgoUML was renamed to setFigs. From the
analysis of the entities involved in such renamings, we

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

23

TABLE 12
Change in meaning renamings as classified by

REPENT.
Opposite Opposite phrase Whole-part Whole-part phrase Unrelated Total

ArgoUML 0 2 0 0 1309 1,311
dnsjava 0 0 0 0 576 576
Eclipse 44 29 0 0 5449 5,522
JBoss 29 38 0 0 5975 6,042
Tomcat 16 7 2 0 1036 1,061
Total 89 76 2 0 14,345 14,512

observed that they are usually used with the negation
operator. In such cases it is more difficult to interpret
an expression containing such entities, especially if
the expression contains a Boolean negation operator.
However, among the surveyed developers only 30%
would rename an entity if the name contains a nega-
tion.

There is a substantial number of renamings clas-
sified as narrow and broaden meaning. For exam-
ple, the method testEJB3RemoteAccess of JBoss
was renamed to testRemoteAccess to emphasize
a more general behavior of the involved entity.
A similar example is represented by the method
getServletRequest of Tomcat that was renamed to
getRequest. There are also cases where the iden-
tifier was made more specific. For example, the
method isRemoteInvocationExecutedInNewThread

of JBoss was renamed to isRemoteAsyncInvocation

ExecutedInNewThread to highlight that the remote
invocation is asynchronous. A similar example is
represented by the renaming type → authType in
Tomcat.

There is also a high number of renamings that add or
remove meaning. An example of adding a meaning is
delete → removeFromDiagram, whereas an example
of remove meaning is addRecord → add. Although
these two kinds of renamings cover about half of the
renamings identified by REPENT, it is worthwhile
to point out that the interpretation can be subjective.
Some of the examples may be classified differently by
different people, e.g., narrow meaning rather than add
meaning.

Finally, 5% of the renamings contain no semantic
change, i.e., are classified as none.

Our qualitative analysis confirms that in many re-
namings the goal of developers when performing
renamings is to improve the comprehensibility of
identifiers. We observed that most of these renamings
are performed to increase the consistency between the
name of an entity and its functionality, or between an
identifier and other identifiers. This goes along with
the high number of survey participants who would
definitely rename an entity when the name and func-
tionality are inconsistent (66%). Specifically, analyzed
renamings aimed at improving the consistency with
the existing code. For example, the method isChildOf

in Eclipse-JDT was renamed to isDescendantOf as

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

ArgoUML	
 dnsjava	
 Eclipse	
 JBoss	
 Tomcat	

Other	
 part	
 of	
 speech	
 change	
 Verb	
 conjugaKon	
 Singular/plural	
 None	

Fig. 14. Proportion of grammar changes identified by
REPENT.

its functionality considers all super types, rather than
the direct parent only. Sometimes developers rename
identifiers to reflect new functionality represented by
an entity. For example, field typeMapping in JBoss
was renamed to datasourceMapping. The analysis
of the log message confirmed that name changed to
reflect the new functionality: “Changed type-mapping
to datasource-mapping as is required by new dtd.” An-
other example is the parameter principal in JBoss,
renamed to authPrincipal. Here the renaming was
a result of a bug fixing (“incorrect principal used”).

RQ3 conclusion: Renamings rarely preserve the
meaning of identifiers (less than 3%). Slightly
more often, the meaning is narrowed (6%), or
broadened (5%). Moreover, renamings with no
semantic changes are rare (5%). Most often, re-
namings change (33%), add (25%), or remove
(21%) a meaning.

6.2.5 RQ4: What kinds of grammar changes occur in
identifiers when they are renamed?

Table 13 and Fig. 14 show the proportion of the
grammar changes in the five programs.

76% of the classified renamings do not involve a
part of speech change, i.e., are classified as none in
the grammar change dimension. When there is a part
of speech change however, only 5% of the changes
involve a change in verb conjugation; 13% involve a
singular/plural change. The majority of the renamings,
i.e., 83%, involve other part of speech changes.

One good reason for developers to change singular
to plural and vice versa is to align an identifier with
the entity (or collection of entities) to which it refers.
For example, a field or a local variable of a collection
type (e.g., ArrayList) should have a plural name,
whereas atomic entities should have, in general, a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24

TABLE 13
Grammar change renamings as classified by

REPENT.
Singular/ Verb Other part of None Total

Plural conjugation speech change
ArgoUML 31 22 608 3,322 3,983
dnsjava 8 0 241 846 1,095
Eclipse 602 198 2,785 8,951 12,536
JBoss 337 125 2,531 10,589 13,582
Tomcat 51 25 479 1,805 2,360
Total 1,029 370 6,644 25,513 33,556

singular name. Such inconsistencies have been pre-
viously studied and denoted as linguistic antipatterns
(LAs) [5] i.e., recurring poor practices in the naming,
documentation, and choice of identifiers in the imple-
mentation of an entity, thus possibly impairing program
understanding. That is, a method name containing only
singular nouns but returning a collection is a LA of
kind “Expecting but not getting a single instance”.
Similarly, method names containing plural nouns but
returning a single object are LA of kind “Expecting
but not getting a collection”. Similar considerations
can be made for fields. In our study, one example of
renaming aimed at removing a LA occurred in JBoss,
class BasicMBeanRegistry, where a local variable
named descriptors was renamed to descriptor

because its type changed from Descriptor[] to
Descriptor. A similar case occurred in ArgoUML
(class LabelledLayout) where a local variable of
type int named unknownHeights was renamed to
unknownHeightCount, the new name being consistent
with the type. In this case, the program only keeps
the count of heights rather than the list of heights,
as suggested by the old name. In Tomcat, a method
of class RealmBase named findSecurityConstraint

was renamed to findSecurityConstraints and its
return type changed from SecurityConstraint to
SecurityConstraint[].

Examples of other part of speech changes include the
parameter renaming localDeclaration → location

and the method renaming deployOnMember →
doDeployment. There were renamings where al-
though the part of speech changes, the role played
by the renamed term remains the same. Ex-
amples are the method renaming getTreeCache

→ getClusteredCache and the field renaming
_multiPane→ _editorPane where although the part
of speech of the renamed terms changed from noun to
adjective and from adjective to noun respectively, the
role played by the terms before and after the renaming
is the same, i.e., modifier of the term after, i.e., Cache
and Pane respectively.

REPENT reports 370 verb conjugation changes. In
32% of such changes the term is is renamed to
get or has (or vice versa). The part of speech that
the tagger assigns to the verb is and has is dif-
ferent from the part of speech of verb get. When
using automatic code generator tools (such as the

Eclipse IDE) for generating getters and setters, the
names of getter methods returning a boolean value
start with is. This is also the recommendation of
JAVA/J2EE naming conventions. This could be a pos-
sible reason to rename getter methods of Boolean
fields to start with is. One such example is the re-
naming getValidProject→ isValidProject, where
the return type of both methods is Boolean. The
rest of verb conjugation changes are change in the
verb tense (past to present or vice versa) or changes
of a verb to gerund. Examples include method re-
namings such as methodNeedingAbstractModifier

→ methodNeedBody and isOverridden Method →
areOverriddenMethods.

RQ4 conclusion: With respect to the grammar
changes, 76% of the classified renamings did not
involve a part of speech change. Of the 24% of
the renamings involving a part of speech change,
a small proportion involved a verb conjugation
change (5%); 13% involved changes in nouns
(singular/plural); 83% involved other part of
speech changes.

7 THREATS TO VALIDITY

This section discusses the threats to validity that can
affect the studies performed in this paper. We discuss
the most important threats that can affect this kind of
study, i.e., construct validity, conclusion validity, and ex-
ternal validity. When needed, we divide the discussion
of each kind of threat in issues related to the detection
performance study and issues related to the renaming
classification study.

Construct validity threats concern the relationship be-
tween theory and observation. As for the renaming
detection study, construct validity threats are due
to the detection of renamed files, the estimation of
precision, and recall. For programs using SVN ver-
sioning system, when files are not explicitly renamed
we compare deleted versus added files for two con-
secutive revisions. We use the Unix diff algorithm
to compare the number of changed lines between
all possible combinations of added and deleted files.
We select the best possible combination (i.e., smallest
number of lines changed) if it does not exceed a
relative threshold of 60%. The value for the threshold
is estimated based on the central tendency of explicitly
renamed files as logged by the versioning system files.
For CVS, we first group files based on the commit
date, log message, and committer ID [58], and then
apply the same heuristic used for SVN, considering
as deleted files the files that appear for the first time
in the “Attic” directory.

As for precision, the manual validation could be
affected by subjectiveness or human error. Specifi-
cally, regarding the classification, we may be affected

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

25

by the lack of domain knowledge—i.e., the original
developers of the five programs may have classified
differently some of the renamings. To mitigate those
threats, the validation was performed by two persons
independently and, in case of different classification,
the renaming was discussed, and a third person was
also asked to perform the classification. As for the
recall, we are aware that the sample of documented
renamings may not be fully representative of the en-
tire set of renamings performed in a project. First, this
happens because developers do not always document
renamings in commit notes, especially if they are
performed together with other changes. Second, most
of the documented renamings are related to types and
thus to constructors, i.e., to entities whose names can
impact on other developers’ activities.

For what concerns the classification study, construct
validity threats are related to (i) the precision and
recall of the set of detected renamings on which the
classification is performed, and (ii) the accuracy of
the automatic classification. Concerning the former,
results of the study reported in Section 5 provide an
indication of such precision and recall. Concerning
the latter, we performed—using a process similar to
the one described above—a manual validation of a
sample of the classified renamings, to provide an idea
of how accurate such a classification is.

Internal validity threats are related to factors, internal
to our study, that can affect our results. As for the
renaming detection, such a threat is mainly due to the
calibration of thresholds. Indeed, different calibration
could have produced different results, and also indi-
rectly affected the subsequent renaming classification
study. Appendix B explains how thresholds have been
empirically determined. Clearly, the calibration has
been performed based on a thorough validation on
a sample set of detected renamings of Tomcat, when
using low thresholds. The use of data from one of
the projects to calibrate thresholds was also used in
other studies [6], [30], [52]. However, this does not
guarantee that the choice is optimal for the other
projects.

Conclusion validity threats concern the relationship
between the experimentation and the outcome. Our
study is an exploratory study in which we do not
make use of statistical tests to reject specific hypothe-
ses. The only issue related to conclusion validity is
the representativeness of the sample used to validate
the renaming detection precision and the classification
accuracy. In the first case, i.e., to evaluate the detection
accuracy, we performed for each program a stratified
random sampling across the kinds of entities consider-
ing a confidence level of 95% and a confidence interval
of at least ±5%. In the second case we performed a
random sampling for all dimensions and levels of the
taxonomy considering a confidence level of 95% and

a confidence interval of at least ±10%.

External validity threats concern the generalizability
of our results. Both the evaluation of the renaming
detection approach and the exploratory study were
conducted on data from a subset of the evolution
history of five Java open-source projects. Although
we have chosen a pretty variegated set of projects—
belonging to different domains and development or-
ganization, and having different size—it could hap-
pen that replicating the study on other projects could
lead to different results, e.g., different performances of
the renaming detection tool, or different distribution
of the detected renamings with respect to the pro-
posed taxonomy. A different matter is the application
of the proposed approach on programming languages
different from Java. In principle, the proposed ap-
proach is applicable to other languages, but some
adaptation may be needed. For example, differently
from Java identifiers, C/C++ identifiers are more
likely to contain abbreviations [24], [38], and would
rarely use camel case or other explicit term separators.
As explained in Section 4.3.1, this would require the
use of appropriate identifier splitting or normalization
approaches [13], [18], [24], [32].

8 RELATED WORK

This section discusses related work on the role of
identifiers in software quality and approaches for
refactoring.

8.1 Role of Identifiers in Software Quality

There is quite a consensus among researchers [12],
[15], [18], [33] on the role played by identifiers on
program comprehension, maintainability, and qual-
ity in general. In particular, researchers studied the
usefulness of identifiers to recover traceability links
[4], [39], measure conceptual cohesion and coupling
[41], [46], and, in general, high quality identifiers are
considered an asset for source code understandability
and maintainability [34], [35], [51].

As suggested by Deissenbock and Pizka [15], identi-
fiers should be consistent and concise. Unfortunately,
verifying consistency and conciseness is a difficult
task and thus approaches have been developed to
detect consistency and conciseness violations by iden-
tifying usages of synonyms and holonyms [33]. We
share the concern expressed in previous studies on
identifier quality as a support for various software en-
gineering tasks. However, we are focusing our study
on identifier renaming based on a newly proposed
taxonomy. We concur with Lawrie et al. [33] that
synonyms can indeed affect consistency. However,
we also believe that renaming towards synonyms
or towards other semantically-related terms—such as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

26

hypernyms, hyponyms, and antonyms—should be
investigated as they likely point to program under-
standing issues.

8.2 Analysis of Changes and Refactoring

Several authors have proposed automated approaches
to detect different kinds of refactorings.

At design level, Xing et al. [55] propose UMLDIFF to
detect refactorings. UMLDIFF works with class dia-
grams; it inputs two class diagrams and it produces as
output an XML design differencing file. By querying
such a XML file, it would be possible to detect sim-
ple (e.g., rename class/method/field, pull-up/push-
down method/field) and composite refactoring ac-
tions (e.g., replace inheritance with delegation).

Demeyer et al. [16] detect object-oriented refactor-
ings based on a set of heuristics defined in terms
of changes of object-oriented metrics measuring two
successive software versions of Smalltalk programs.

Dig et al. [17] propose REFACTORING CRAWLER for de-
tecting sequences of refactorings between consecutive
versions of Java programs. REFACTORING CRAWLER
identifies seven types of refactoring. Among others,
they detect—as does REPENT—-package, class, and
method renaming. The detection algorithm consists of
a fast syntactic analyzer followed by a more compu-
tationally intensive semantic analyzer. The syntactic
analyzer finds similar text fragments between two
versions of source code based on Shingle encoding [9]
as candidates of refactorings. The semantic analyzer
further filters the candidate pairs to reduce false pos-
itives.

Weissgerber and Diehl propose a signature-based ap-
proach to identify refactorings [54]. The approach
starts with collecting and pre-processing data from
the version control system. Next, it identifies added
and removed entities (classes, interfaces, methods,
and fields) in each transaction. Those entities are then
compared based on their signatures and potential
refactorings are identified. The approach then ranks
and filters potential refactorings based on the simi-
larity of the entity body in the old and new version.
To measure the similarity between the two versions,
the approach first tests for string equality. Then if it
fails, the approach uses the result of a token-based
code clone detection algorithm, i.e., CCFINDER [28].
Among the detected refactorings, the approach detects
“Rename Method” and “Rename Class” refactorings,
as REPENT does.

Prete et al. [47] propose REF-FINDER as a way to detect
atomic refactorings and then based on logic templates
reconstruct more complex refactorings (such as ex-
tract method). REF-FINDER detects method renamings
based on method body similarity.

It is important to point out that the approaches de-
scribed above have been conceived to detect refac-
torings in general. They detect only a subset of the
renamings detected by REPENT, and do not perform
a classification of the detected renamings.

Malpohl et al. [40] propose RENAMING DETECTOR for
detecting identifier renamings. The tool uses three
main components: Parser, Symbol Analyzer, and Dif-
ferencer. RENAMING DETECTOR analyzes each file for
extracting identifier declarations and references. Next,
it matches the declarations in two versions of a file.
To increase accuracy, variable types and references
are compared for matching the identifiers. Malpohl
et al. evaluated the technique on two consecutive
versions of the tool itself. They report a 100% pre-
cision rate for of the 77 analyzed file pairs. We share
with Malpohl et al. the general idea as well as the
use of data-flow analysis in the renaming detection
process. However, our approach for the detection of
renamings is substantially different. Specifically, it is
a multi-stage approach, in which an initial filtering
localizing changes based on differencing analysis is
then followed by a data-flow analysis on candidate
renamings, aimed at filtering out false positives. This
allows us a better scalability, and hence the ability to
analyze the evolution of large projects such as JBoss
or Eclipse-JDT.

Neamtiu et al. [44] propose an approach for under-
standing code evolution using AST matching. They
analyze open source programs written in C and pro-
vide a release digest that summarized changes be-
tween two subsequent releases of a file. Renamings of
types and variables are part of the changes detected
by the authors. Those renamings correspond to our
class, field, local variable, and parameter renamings.
The approach does not handle method renamings,
nor local variable and parameter renamings when the
latter are in a renamed method because the approach
is based on the hypothesis that in C functions are rel-
atively stable over time. Thus, to detect local variable
and parameter renamings, Neamtiu et al. compare the
ASTs of two methods with the same name. Such an
assumption would be unrealistic for Java programs.
As our results show, method renamings represent 26%
of the renamings for the 5 programs.

Fluri et al. [20] propose a tree differencing algorithm,
CHANGEDISTILLER, for extracting the changes from
two consecutive versions of Java files. Renaming is
a type of change that CHANGEDISTILLER can detect
together with many others. The algorithm compares
the ASTs of the files and computes the edit operations
to transform the AST of the old version of a file to
the AST of the new version of the same file. Fluri
et al. used bi-gram string similarity for calculating
the similarity between two leaf nodes (i.e., identifier
names). Thus, the detection of renamings is based on

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

27

TABLE 14
Accuracy of REPENT and DIFFCAT on a random

sample of revisions.
Precision TP / Detected FN

REPENT DIFFCAT REPENT DIFFCAT REPENT DIFFCAT
dnsjava 99% 96% 104 / 105 99 / 103 16 21
JBoss 81% 72% 108 / 133 77 / 107 33 63

the declaration, whereas in our case we consider def-
uses when available. As in our case, the detection
of renamings depends on the pre-established thresh-
olds. To evaluate their approach, Fluri et al. built a
benchmark that consists of 1,064 manually classified
changes of eight methods extracted from three open
source programs. Only four of the classified changes
are renamings, specifically one method and three
parameters.

Kawrykow and Robillard [29] measured the impact
of non-essential differences on approaches aimed at
detecting change couplings based on association rule
discovery [58]. Kawrykow and Robillard treated the
renaming of an entity as an “essential” change, while
the updated (i.e., impacted) statements of this re-
naming are considered as “non-essential”. Although
the end goal is different from ours, detecting renam-
ings is part of both approaches. To detect renamings
Kawrykow and Robillard propose DIFFCAT, which is
built on the approach of Fluri et al. [20]. That is, they
used CHANGEDISTILLER to detect method and field
renamings. However, they further enhanced it to also
detect class, local variable, and additional field renam-
ings. Since the goal of DIFFCAT is different from ours,
it favors precision at the expense of recall. We com-
pared REPENT to DIFFCAT on renamings detected in
a random sample of revisions of dnsjava and JBoss.
For each randomly selected revision, we applied both
tools and manually validated the detected renamings.
We stopped sampling once both approaches reached
a total of 100 renamings. Table 14 shows the results
of the comparison14. The last column of Table 14
reports the false negatives (FN), i.e., the number of
true renamings that each approach does not detect.
Overall, REPENT outperforms DIFFCAT in terms of
precision and number of detected true renamings.

REPENT uses file context diff to reduce the search
space of entities involved in potential renamings, the
actual validation of renamings is mainly based on
the def-use analysis or, when not available, on the
similarity between declarations. File context diff can
be replaced with any other differencing tool including
CHANGEDISTILLER. However, the advantage of the
file context diff is its speed and a simple compari-
son between file context diff and CHANGEDISTILLER
showed that both tools are sensitive to cases where
chunks of code are moved within a file. In addi-

14. The detected and validated renamings can be found in the
replication package.

tion, the comparison with DIFFCAT, which is built
on CHANGEDISTILLER, shows that REPENT is more
accurate in terms of detected renamings.

We share with all of the above approaches their
general ideas and goal. We also use parsing and
differencing technologies, though in a different com-
bination, to achieve an approximated, lightweight,
robust, and scalable approach. The novelty of our
work is a renaming taxonomy directly conceived to
better represent renamings on orthogonal dimensions,
and a classifier that—by relying on WordNet and on
the Stanford NLP—classified renamings according to
the proposed taxonomy. Thus REPENT detects finer-
grain details about renamings, such as the grammati-
cal renaming type or the semantic type. Furthermore,
our approach does not require a compilable program
to work.

9 CONCLUSION AND FUTURE WORK

Identifier renaming is considered by developers as
an important and non-trivial task in the context of
software evolution. We conducted a survey with 71
industrial and open-source developers and show that,
as part of the evolution of software programs, de-
velopers rename identifiers to improve the quality
of the source code lexicon and its consistency with
the program functionality. Despite the importance of
renaming and the associated with it cost (92% of
the surveyed developers do not consider renaming
as straightforward), renamings are hardly ever docu-
mented (1% of the renamings in the five programs
that we studied) hence the need for an automatic
documentation of renamings that 52% of the surveyed
developers consider useful.

In this paper we propose REPENT (REnaming Pro-
gram ENTities)—an approach to automatically doc-
ument, i.e., detect and classify, identifier renamings
between different versions of a Java program. For
detecting renamings, REPENT first reduces the search
space by identifying changes from mapped source
code lines between versions of a program resulting
in candidate renamings, after which it performs data
flow analysis on the entities involved in the candidate
renamings to filter out false positives. We analyzed
renamings detected by REPENT in the evolution
history of five open-source programs (ArgoUML, dns-
java, Eclipse-JDT, JBoss, and Tomcat), and reported
a precision of 88% and a recall—with respect to
the documented renamings—of 92%. By combining
an ontological database (WordNet) with a natural
language parser (Stanford NLP) REPENT classifies
renamings according to the different dimensions of
our taxonomy, and specifically (i) the kind of entity
being renamed, (ii) the form of the renaming, (iii)
semantic change, and (iv) grammatical change. By

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

28

relying on REPENT, we conducted an exploratory
study—on the five Java programs used to evaluate
the performances—aimed at determining how devel-
opers rename identifiers according to the proposed
taxonomy.

As pointed out above, REPENT relies on external
tools such as the Unix diff, WordNet, and Stanford
NLP, which turned out to suffice for our needs. How-
ever, future developent activities could easily extend
REPENT by replacing such tools with alternative and
possibly more accurate ones.

We conjecture that renamings documented and clas-
sified by REPENT can be used as a base towards
building a renaming recommender system. This also
reflect results of our survey, where 68% of the sur-
veyed developers indicated the usefulness of auto-
matic recommendations for renaming, provided that
such recommendations are non-intrusive and offer
reliable suggestions.

More specifically, REPENT can be the core com-
ponent of renaming recommenders that, by learn-
ing from past renamings, could automatically point
out inconsistencies to developers—e.g., linguistic an-
tipatterns [5]—to proactively suggest how to rename
identifiers to improve source code comprehensibility
as well as pointing to past renamings conflicting
with the ongoing renaming activity. Such foresee-
able recommenders would for example be useful in
the following situation. In revision 67429 of JBoss,
method deploy was renamed to internalDeploy in
five different classes. In the same revision, in three
of those classes method unDeploy was renamed to
internalUnDepoly. The same set of renamings oc-
curred at a later stage (revision 79147) for a different
class. Hence, documenting the renamings in revision
67429 and learning from them would have facilitated
the work of developers in later revisions, when cre-
ating an entity or renaming it, by pointing to names
used in a similar context. If such a recommendation is
not accepted by the developer, it will still be beneficial
as it will be clear that such contrast is deliberate and it
is performed with the developer’s full awareness, thus
the rationale behind it must be explicitly documented
for future evolution.

Besides building a renaming recommender, work-
in-progress also aims at supporting programming
languages other than Java, as for example scripting
languages like PHP.

APPENDIX A
SURVEY

This appendix reports detailed results of the survey
illustrated in Section 2.

First, we report information about participants’ back-
ground. In particular, Fig. 15 shows statistics regard-
ing the native language of the participants, whereas
Fig. 16 reports their years of experience in industrial
and open-source software development.

Fig. 17 reports how often developers rename. Only
14% of participants rename rarely (up to once per
month): 46% rename occasionally (a few times per
month) while 18% rename frequently (a few times per
week) and 21% rename very frequently (almost every
day).

Fig. 18 indicates activities during which developers
rename. Note that a participant may select more
than one activity, thus the sum of the percentages is
above 100%. Participants rarely perform renaming as
a standalone activity (17%). Often, they rename when
performing other refactorings (90%), changing the
functionality (89%), adding new functionality (65%),
understanding code (51%), or fixing a bug (42%).

Fig. 19 provides insights about the opinion of partici-
pants about the cost of renaming. 35% of participants
consider that renaming requires time and effort (at
least in most cases); 32% consider that the cost of
renaming depends on the particular case; 32% con-
sider renaming to be straightforward (at least in most
cases). Note that the sum of the above is 99% due to
rounding errors.

Fig. 20 reports results on the use of tool support for
renaming. The majority of the participants (72%) use
automatic tool support to perform renaming. There
are however participants that rename manually (20%)
and participants that perform both, manual and au-
tomatic renaming (8%).

We asked participants to share the reasons for which
they recall having decided not to rename an entity;
results are shown in Fig. 21. 52% of the participants
recall the reason to be the potential impact on other
systems. 35% recall that the renaming was too risky,
i.e., it might have introduced a bug. 25% of the partic-
ipants answered that the high impact of the renaming
on the system was the show-stopper and finally, 25%
recall deciding not to rename because of the high
effort required.

We also asked participants whether a set of predefined
factors would impact the decision to undertake a
renaming. Results are not surprising (Fig. 22). The
majority of participants consider important all those
factors. However, the factor that is worth highlighting
here is the impact on other projects—69% of par-
ticipants say that this would definitely impact their
decision.

Fig. 23 shows when developers feel the need to re-
name. As expected, the majority (66%) of participants
clearly state that they will definitely rename an entity

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

29

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Dutch 2 0.028169014084507

German 2 0.028169014084507

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 0.0422535211267606

Persian 3 0.0422535211267606

Russian 6 0.0845070422535211

French 12 0.169014084507042

English 26 0.366197183098592

Unknown 4 0.0563380281690141

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 4%

Persian 3 4%

English 26 37%

French 12 17%

Russian 6 8%

German 4 6%

Other 23 32%

Native language

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

32%6%8%17%37%

English French Russian German Other

Fig. 15. Native language of the participants.

0-5 6-10 11-15 16+

How many years of experience do you have in
software development?!!

8 22 19 21 70 Total

How many years of industrial experience do you
have in software development?!!

27 18 15 11 71 71

How many years of experience do you have in
development of open-source systems?!!

46 18 7 0 71

How many years of experience do you have in
software development?!!

11% 31% 27% 30% 99%

How many years of industrial experience do you
have in software development?!!

38% 25% 21% 15% 100%

How many years of experience do you have in
development of open-source systems?!!

65% 25% 10% 0% 100%

Industrial experience in software development

Experience in development of open-source systems

0% 25% 50% 75% 100%

15%

10%

21%

25%

25%

65%

38%

0-5 6-10 11-15 16+

Fig. 16. Experience of the participants in software development.

Renaming
frequency

Very frequently (almost every day) 15 21%

Frequently (few times per week) 13 18%

Occasionally (few times per month) 33 46% 71

Rarely (up to once per month) 10 14% Total

Renaming frequency

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14%46%18%21%

Very frequently Frequently Occasionally Rarely

Fig. 17. How often do developers rename?

When do you rename?

When changing the functionality 63 89% Total

When adding new functionality 46 65% 71

When understanding code 36 51%

When fixing a bug 30 42%

When performing refactoring 64 90%

Apart from other development activities 12 17%

When changing the functionality

When adding new functionality

When understanding code

When fixing a bug

When performing refactoring

Apart from other development activities

0% 20% 40% 60% 80% 100%

17%

90%

42%

51%

65%

89%

When do developers rename?
Fig. 18. Activities accompanying renaming.

Yes (identifier renaming
requires time and effort)

18 25%

In most cases yes 7 10% 48

Sometimes no, sometimes
yes

23 32%

In most cases no 17 24% 71

No (identifier renaming
is straightforward)

6 8% Total

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8%24%32%10%25%

Yes, it requires time and effort In most cases yes Sometimes no, sometimes yes In most cases no No, it is straightforward

Do renaming has a cost?

Fig. 19. Developers’ opinion on cost of renaming.

Automatic tool
support

51 72% Total

Manually rename 14 20% 71

Both 6 8%

0% 25% 50% 75% 100%

8%20%72%

Automatic tool support Manually Both

How do developers rename?

Fig. 20. How do developers rename?

High effort
required

18 25% Total

High impact on
the system

18 25% 71

Too risky (could
introduce bugs)

25 35%

Potential impact
on other systems
using this system
(e.g. as a library)

37 52%

High effort required

High impact on the system

Too risky (could introduce bugs)

Potential impact on other systems  
using this system (e.g. as a library)

0% 10% 20% 30% 40% 50% 60%

52%

35%

25%

25%

It happened to developers not to rename because:Fig. 21. Reasons for which developers already postponed or canceled a renaming.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

30

Definitely WILL impact Probably WILL impact Undecided Probably NO impactDefinitely NO impact

You are not the owner of the code 27 29 7 4 2 Total

The entity being renamed is used in many
places in the code

22 23 3 17 5 71

The entity being renamed is used in other
projects

49 19 1 0 0

You are close to a release deadline 31 23 7 6 2

Insufficient (or lack of) domain knowledge 41 19 5 4 1

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

38% 41% 10% 6% 3%

The name does not follow the language
naming conventions

31% 32% 4% 24% 7%

The name does not follow the team naming
conventions

69% 27% 1% 0% 0%

The name contains an abbreviation/acronym 44% 32% 10% 8% 3%

The name contains a spelling error 58% 27% 7% 6% 1%

Code ownership

Many uses

Uses in other projects

Close to deadline

Insufficient (lack of) domain knowledge

0% 25% 50% 75% 100%

1%

3%

7%

3%

6%

8%

24%

6%

7%

10%

1%

4%

10%

27%

32%

27%

32%

41%

58%

44%

69%

31%

38%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Fig. 22. Factors impacting developers decision to undertake a renaming.

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

47 23 0 1 0 Total

The name does not follow the language
naming conventions

24 33 7 5 2 71

The name does not follow the team
naming conventions

24 27 12 6 0

The name contains an abbreviation/
acronym

0 9 21 35 5

The name contains a spelling error 31 29 5 6 0

The name contains misleading/hard to
understand words

22 34 9 5 0

The name contains a negation 5 16 15 27 6

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

66% 32% 0% 1% 0%

The name does not follow the language
naming conventions

34% 46% 10% 7% 3%

The name does not follow the team naming
conventions

34% 38% 17% 8% 0%

The name contains an abbreviation/acronym 0% 13% 30% 49% 7%

The name contains a spelling error 44% 41% 7% 8% 0%

The name contains misleading/hard to
understand words

31% 48% 13% 7% 0%

The name contains a negation 7% 23% 21% 38% 8%

The name and functionality are not consistent

The name does not follow the language naming conventions

The name does not follow the team naming conventions

The name contains an abbreviation/acronym

The name contains a spelling error

The name contains misleading/hard to understand words

The name contains a negation

0% 25% 50% 75% 100%

8%

7%

3%

38%

7%

8%

49%

8%

7%

1%

21%

13%

7%

30%

17%

10%

23%

48%

41%

13%

38%

46%

32%

7%

31%

44%

34%

34%

66%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Fig. 23. When will developers rename?

if its name is not consistent with its functionality. They
made less strong statements about naming conven-
tions, spelling errors, and hard to understand words,
but still the majority of participants report that they
will probably rename in such cases. Surprisingly, only
13% of participants will probably rename if an entity
contains an abbreviation—the majority of participants
(56%) will not rename. Finally, when the name of an
entity contains a negation, e.g., notOpen, 30% of the
participants will rename, while 46% will not.

We asked participants whether they consider use-
ful automatically documenting renaming; results are
shown in Fig. 24. The majority (52%) are positive.
33% of participants are negative about automatic
documentation. The remaining participants did not
provide their opinion.

Fig. 25 reports participants’ opinion on renamings that
are useful to document. More specifically, develop-
ers see the usefulness of automatically documenting
renamings of public APIs, i.e., classes and methods,
and renamings concerning the meaning of the name—
renaming towards opposite meaning, towards unre-
lated words, towards more general/specific names,
adding/removing meaning. Surprisingly, the percent-

age of participants that see a benefit from automatic
renaming towards synonyms is lower—36%. Simi-
larly, but not surprisingly, a small number of partic-
ipants see a benefit from automatically documenting
renaming of entities with local scope, renamings to-
wards abbreviations/expansions, and spelling errors.

The majority (68%) of participants see a benefit of au-
tomatic recommendations for renaming (Fig. 26) pro-
vided that such recommendations are non-intrusive
and offer reliable suggestions. Fig. 26 reports devel-
opers’ opinion on the usefulness of recommending
renamings. Finally, participants see the benefit of rec-
ommendations regarding the majority of renamings
(Fig. 27).

APPENDIX B
SETTING THE THRESHOLDS

B.1 Thresholds for detecting renamings

REPENT uses three sets of thresholds, where each
threshold varies in the range [0, 1]. Specifically, the
REPENT thresholds are described as follows:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

31

Definitely YES Probably YES Undecided Probably NO Definitely NO

Do you think that automatically
documenting identifier renamings is
useful?

13 24 0 18 6 Total

Do you think that automatically
documenting identifier renamings is
useful?

18% 34% 0% 25% 8% 71

Is automatically documenting identifier renamings useful?

0% 23% 45% 68% 90%

8%25%34%18%

Definitely YES Probably YES Probably NO Definitely NO

Fig. 24. Developers’ opinion on the usefulness of documenting renamings.

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 29 11 9 9 6 Total

Attribute 17 14 12 13 8 71

Constructor 9 11 10 19 7

Getter/Setter 10 18 12 15 7

Other methods (excl. getters/setters
and constructors)

16 18 14 10 6

Parameter 10 8 7 28 11

Local variable 5 7 6 26 20

Towards synonyms 8 18 9 23 7

Correcting typos 6 15 7 23 14

Expanding a word 4 16 10 25 10

Abbreviating a word 8 15 11 21 9

Towards opposite meaning 23 18 10 7 6

Towards unrelated words 18 19 13 8 6

Towards more specific name 15 19 11 13 6

Towards more general name 16 19 12 11 6

Meaning is added in the new name 18 18 14 8 6

Meaning is removed in the new name 18 18 15 7 6

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 41% 15% 13% 13% 8% Total

Attribute 24% 20% 17% 18% 11% 71

Constructor 13% 15% 14% 27% 10%

Getter/Setter 14% 25% 17% 21% 10%

Other methods (excl. getters/setters
and constructors)

23% 25% 20% 14% 8%

Parameter 14% 11% 10% 39% 15%

Local variable 7% 10% 8% 37% 28%

Towards synonyms 11% 25% 13% 32% 10%

Correcting typos 8% 21% 10% 32% 20%

Expanding a word 6% 23% 14% 35% 14%

Abbreviating a word 11% 21% 15% 30% 13%

Towards opposite meaning 32% 25% 14% 10% 8%

Towards unrelated words 25% 27% 18% 11% 8%

Towards more specific name 21% 27% 15% 18% 8%

Towards more general name 23% 27% 17% 15% 8%

Meaning is added in the new name 25% 25% 20% 11% 8%

Meaning is removed in the new name 25% 25% 21% 10% 8%

Class/Interface

Attribute

Constructor

Getter/Setter

Methods

Parameter

Local variable

Towards synonyms

Correcting typos

Expanding a word

Abbreviating a word

Towards opposite meaning

Towards unrelated words

Towards more specific name

Towards more general name

Meaning is added in the new name

Meaning is removed in the new name

0% 25% 50% 75% 100%

8%
8%
8%
8%
8%
8%

13%
14%

20%
10%

28%
15%

8%
10%

10%
11%

8%

10%
11%

15%
18%

11%
10%

30%
35%

32%
32%

37%
39%

14%
21%

27%
18%

13%

21%
20%

17%
15%

18%
14%

15%
14%
10%

13%
8%

10%
20%

17%
14%

17%
13%

25%
25%

27%
27%

27%
25%

21%
23%

21%
25%

10%
11%

25%
25%

15%
20%

15%

25%
25%

23%
21%

25%
32%

11%
6%
8%
11%

7%
14%

23%
14%
13%

24%
41%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Fig. 25. Developers’ opinion on renamings that are useful to document.

Definitely YES Probably YES Undecided Probably NO Definitely NO

Do you think that recommend identifier names/renamings(and
therefore suggesting a better name from the beginningor at the time
of renaming)is useful?!!

22 26 0 12 1 Total

Do you think that recommend identifier names/renamings(and
therefore suggesting a better name from the beginningor at the time
of renaming)is useful?!!

31% 37% 0% 17% 1% 71

Is recommending identifier renamings useful?

0% 23% 45% 68% 90%

1%17%37%31%

Definitely YES Probably YES Probably NO Definitely NO

Fig. 26. Developers’ opinion on the usefulness of recommending renamings.

• Statement Similarity Threshold (SST): used to
match def-uses of the mapped entities.

• Number of Matched Statements Threshold
(NST): used to decide if the mapped entities
have a sufficiently high number of matched def-
uses statements, to support the evidence of a real
renaming.

• Declaration Similarity Threshold (DST): used
to match the declaration of two mapped entities,
whenever one or both entities do not have uses.

While DST has been set to a constant value not

depending on the kind of entity, SST and NST require
different calibrations to be able to work effectively on
different kinds of entities, in order to balance false
positives as well as false negatives. The rationale is
that for different entities (class names, method names,
etc.) the syntax and frequency of statements where
def-uses occur may be quite different.

We calibrate the thresholds by varying NST between
zero and one, with step 0.1; for each fixed value of
NST (e.g., 0.4), we made SST vary (between zero and
one with step 0.1).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

32

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 23 21 9 4 3 Total

Attribute 16 29 6 7 2 71

Constructor 11 12 13 15 3

Getter/Setter 15 22 10 10 2

Other methods (excl. getters/setters
and constructors)

16 26 8 8 2

Parameter 15 24 11 7 2

Local variable 9 20 10 14 6

Regarding synonyms 13 27 11 7 2

Regarding typos 30 19 5 5 1

Regarding the expansion of a word 11 23 11 12 3

Regarding the abbreviation of a word 9 18 13 17 3

Regarding words with opposite
meaning

13 21 11 8 3

Regarding words with unrelated
meaning

11 13 18 10 3

Regarding more specific name 13 20 13 7 2

Regarding more general name 12 17 15 9 2

Regarding adding a meaning 11 18 18 6 2

Regarding removing a meaning 10 16 17 10 2

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 32% 30% 13% 6% 4% Total

Attribute 23% 41% 8% 10% 3% 71

Constructor 15% 17% 18% 21% 4%

Getter/Setter 21% 31% 14% 14% 3%

Other methods (excl. getters/setters
and constructors)

23% 37% 11% 11% 3%

Parameter 21% 34% 15% 10% 3%

Local variable 13% 28% 14% 20% 8%

Regarding synonyms 18% 38% 15% 10% 3%

Regarding typos 42% 27% 7% 7% 1%

Regarding the expansion of a word 15% 32% 15% 17% 4%

Regarding the abbreviation of a word 13% 25% 18% 24% 4%

Regarding words with opposite
meaning

18% 30% 15% 11% 4%

Regarding words with unrelated
meaning

15% 18% 25% 14% 4%

Regarding more specific name 18% 28% 18% 10% 3%

Regarding more general name 17% 24% 21% 13% 3%

Regarding adding a meaning 15% 25% 25% 8% 3%

Regarding removing a meaning 14% 23% 24% 14% 3%

Class/Interface

Attribute

Constructor

Getter/Setter

Methods

Parameter

Local variable

Regarding synonyms

Regarding typos

Regarding the expansion of a word

Regarding the abbreviation of a word

Regarding words with opposite meaning

Regarding words with unrelated meaning

Regarding more specific name

Regarding more general name

Regarding adding a meaning

Regarding removing a meaning

0% 23% 45% 68% 90%

3%

3%

3%

3%

4%

4%

4%

4%

1%

3%

8%

3%

3%

3%

4%

3%

4%

14%

8%

13%

10%

14%

11%

24%

17%

7%

10%

20%

10%

11%

14%

21%

10%

6%

24%

25%

21%

18%

25%

15%

18%

15%

7%

15%

14%

15%

11%

14%

18%

8%

13%

23%

25%

24%

28%

18%

30%

25%

32%

27%

38%

28%

34%

37%

31%

17%

41%

30%

14%

15%

17%

18%

15%

18%

13%

15%

42%

18%

13%

21%

23%

21%

15%

23%

32%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Fig. 27. Developers’ opinion on renamings that are useful to recommend.

TABLE 15
Thresholds chosen for the study as well as corresponding TPR and FPR on the calibration set.

Kind of entity SST NST DST TPR FPR Precision
Type 0.8 0.3 0.7 89% (17/19) 0% (0/1) 100%
Constructor 0.6 0.8 0.7 100% (7/7) 0% (0/4) 100%
Field 0.8 0.4 0.7 86% (262/303) 12% (20/163) 93%
Method 0.8 0.3 0.7 95% (349/368) 18% (11/61) 97%
Getter/Setter 0.8 0.2 0.7 93% (250/270) 18% (22/122) 92%
Parameter 0.7 0.5 0.7 64% (214/334) 36% (48/132) 82%
Local variable 0.8 0.3 0.7 77% (172/224) 4% (11/257) 94%
Overall 83% (1271/1525) 15% (112/740) 92%

We used Tomcat as a calibration data set, i.e., we
used the oracle of 724 renamings detected in our
previous study [19] and manually classified. In ad-
dition, to better distinguish how REPENT performs
with different thresholds, we computed the set of
renamings that change when thresholds vary—we
computed the union and intersection of the detected
renamings for all combinations of the different val-
ues of NST and SST. We then randomly sampled
renamings from the complement of the intersection
until reaching an oracle that sufficiently discriminates
the different thresholds—we stopped when the oracle
reached 2,265 renamings. Next, we computed the True
Positive Rate (TPR) and the False Positive Rate (FPR)

for each entity kind on the calibration set. TPR and
FPR were used to generate a family of Receiver Op-
erating Characteristic (ROC) curves. ROC curves plot
the TPR over the FPR at various threshold settings.
Notice that TPR is equivalent to recall. The relation
between FPR (TPR) and precision is more complex as
precision is the ratio of true positives over the sum of
true positives and false positives; however, reducing
FPR increases the number of correctly classified items,
and thus it improves precision.

Fig. 28 shows a subset of ROC family computed for
class FielD (FD); top right curve (symbol +) was
obtained setting NST= 0.1, while the bottom left
curve (symbol N) corresponds to NST=0.9. REPENT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

33

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.15 0.2 0.25 0.3

TPR

FPR

Selected FD ROC curves parametrized by SST

NST: 0.1
NST: 0.2
NST: 0.3
NST: 0.4
NST: 0.5
NST: 0.6
NST: 0.7
NST: 0.8
NST: 0.9

Fig. 28. REPENT class FielD (FD) ROC curves as
functions of SST and NST.

works on the ROC curve with NST= 0.4 (symbol
�). The SST value was fixed at 0.8 which gives (on
the calibration set) TPR of 86% and FPR of 12%. As
shown in Fig. 28, these two values are the threshold
values giving (on our FD calibration set) the highest
TPR with a reasonably low FPR for FD; no other
ROC curve has a lower FPR with a higher (or equal)
TPR. For example, the topmost-right ROC curve (de-
noted with +) indicates a higher TPR at a price of
a higher FPR. In essence, depending on the goal to
be achieved, REPENT can be calibrated to favor low
FPR, high TPR or a compromise between the two.
This latter choice was used to select, via the same
analysis process, for each entity kind SST and NST
values reported in Table 15.

B.2 Thresholds for classifying renamings

To classify renamings as spelling errors REPENT uses
a threshold for the Levenshtein distance between the
old and new name of an entity. Lower values for the
Levenshtein distance threshold ensure a high preci-
sion in the classification, but also a higher number of
false negatives. Table 16 shows the accuracy of the
classification of renamings as spelling errors on Tom-
cat when the Levenshtein distance threshold varies
from 1 to 5. A threshold of 1 ensures 0% FPR while
failing to classify as spelling errors renamings such

TABLE 16
Accuracy of the classification of renamings as spelling
errors using different Levenshtein distance thresholds

on Tomcat.
Threshold value TPR FPR
1 86% 0%
2 100% 4%
3 100% 25%
4 100% 50%
5 100% 100%

as refeelReadBuffer → refillReadBuffer. In-
creasing the threshold to 2 solves this issue while
keeping a low FPR (4% on Tomcat). An example of
misclassified renaming when the Levenshtein distance
threshold is set to 2 is class → clazz.

APPENDIX C
SAMPLING FOR EVALUATION

C.1 Sampling for evaluating the detection

Table 17 reports the sample size and the number
of detected renamings, overall and for each kind
of entity (we highlight in bold face the size of the
significant sample). For example, for ArgoUML (first
system in Table 17) we sampled 352 renamings for
validation out of the 3,994 detected renamings for that
program.

C.2 Sampling for evaluating the classification

Tables 18 to 20 report the sample size and the number
of correctly classified renamings for each dimension
of taxonomy. We highlight in bold face the significant
samples and the corresponding precision. For exam-
ple, regarding forms of renaming (Table 18) we sampled
96 simple renamings and 93 of them are correctly
classified thus resulting in a precision of 97%. We do
not evaluate the accuracy of the classification for the
entity kind dimension as it is correct by construction,
i.e., it is extracted when parsing the source code, and
its only imprecision could also be due to mistakes in
the Eclipse JDT parser we used.

REFERENCES

[1] Abbott, R.J.: Program design by informal english descriptions.
Commun. ACM 26(11), 882–894 (1983)

[2] Abebe, S.L., Haiduc, S., Marcus, A., Tonella, P., Antoniol, G.:
Analyzing the evolution of the source code vocabulary. In:
Proceedings of the European Conference on Software Mainte-
nance and Reengineering, pp. 189–198 (2009)

[3] Abebe, S.L., Tonella, P.: Natural language parsing of program
element names for concept extraction. In: Proceedings of the
International Conference on Program Comprehension (ICPC),
pp. 156–159 (2010)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

34

TABLE 17
Sample size to estimate the precision of REPENT.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package 1 / 1 0 / 0 1 / 4 1 / 7 0 / 0 3 / 12
Type 2 / 18 17 / 67 5 / 180 18 / 656 9 / 70 51 / 991
Constructor 1 / 16 40 / 159 4 / 139 13 / 475 7 / 49 65 / 838
Field 190 / 2,156 15 / 59 58 / 1,945 49 / 1,808 67 / 498 379 / 6,466
other-MD 17 / 200 44 / 177 58 / 1,966 66 / 2,397 59 / 441 244 / 5,181
Getter/Setter 17 / 192 11 / 45 37 / 1,244 44 / 1,595 57 / 423 166 / 3,499
Parameter 61 / 696 126 / 506 96 / 3,226 94 / 3,419 75 / 561 452 / 8,408
Local variable 63 / 715 37 / 149 114 / 3,853 90 / 3,261 59 / 439 363 / 8,417
OVERALL 352 / 3,994 290 / 1162 373 / 12,557 375 / 13,618 333 / 2,481 1,723 / 33,812

TABLE 18
Evaluation of classification for “Forms of renaming”.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Simple 100% (4/4) 100% (1/1) 94% (34/36) 100% (43/43) 92% (11/12) 97% (93/96)
Complex 100% (2/2) 100% (2/2) 96% (47/49) 94% (32/34) 100% (8/8) 96% (91/95)
Formatting only 100% (58/58) 100% (6/6) 100% (3/3) 100% (24/24) 100% (2/2) 100% (93/93)
Term reordering - - 100% (23/23) 100% (18/18) 100% (5/5) 100% (46/46)
Overall 100% (64/64) 100% (9/9) 96% (107/111) 98% (117/119) 96% (26/27) 98% (323/330)

TABLE 19
Evaluation of classification for “Semantic changes”.
ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall

Preserve

Synonym 50% (1/2) - 94% (33/35) 97% (36/37) 88% (7/8) 94% (77/82)
Synonym phrase - - 0% (0/1) 100% (2/2) - 67% (2/3)
Spelling error - 100% (1/1) 100% (32/32) 94% (32/34) 100% (9/9) 97% (74/76)
Expansion 100% (17/17) 100% (1/1) 81% (17/21) 90% (19/21) 100% (6/6) 91% (60/66)
Abbreviation 67% (2/3) - 93% (13/14) 90% (36/40) 100% (9/9) 91% (60/66)
Overall 91% (20/22) 100% (2/2) 92% (95/103) 93% (125/134) 97% (31/32) 93% (273/293)

Change

Opposite - - 100% (25/25) 88% (14/16) 100% (5/5) 96% (44/46)
Opposite phrase 0% (0/1) - 29% (6/21) 44% (8/18) 0% (0/3) 33% (14/43)
Whole-part - - - - 100% (2/2) 100% (2/2)
Whole-part phrase - - - - - -
Unrelated 67% (4/6) - 78% (31/40) 79% (33/42) 71% (5/7) 77% (73/95)
Overall 57% (4/7) - 72% (62/86) 72% (55/76) 71% (12/17) 72% (133/186)

Narrow Specialization 0% (0/3) 100% (1/1) 78% (31/40) 35% (11/31) 50% (2/4) 57% (45/79)
Specialization phrase 100% (3/3) 50% (1/2) 70% (28/40) 63% (24/38) 56% (5/9) 66% (61/92)
Overall 50% (3/6) 67% (2/3) 74% (59/80) 51% (35/69) 54% (7/13) 62% (106/171)

Broaden Generalization 67% (2/3) - 85% (40/47) 75% (15/20) 63% (5/8) 79% (62/78)
Generalization phrase 67% (2/3) - 65% (33/51) 58% (15/26) 36% (4/11) 59% (54/91)
Overall 67% (4/6) - 74% (73/98) 65% (30/46) 47% (9/19) 69% (116/169)

Add 100% (1/1) - 84% (47/56) 87% (27/31) 43% (3/7) 82% (78/95)
Remove 100% (3/3) 100% (3/3) 94% (46/49) 88% (30/34) 67% (4/6) 91% (86/95)
None 100% (40/40) 100% (5/5) 100% (16/16) 100% (27/27) 100% (5/5) 100% (93/93)
Overall 88% (75/85) 92% (12/13) 82% (398/488) 79% (329/417) 72% (71/99) 80% (885/1102)

TABLE 20
Evaluation of classification for “Grammar changes”.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall

Grammar change Part of speech change
Singular/Plural 100% (1/1) - 100% (57/57) 100% (28/28) 100% (2/2) 100% (88/88)
Verb conjugation 50% (1/2) - 79% (23/29) 83% (29/35) 70% (7/10) 79% (60/76)
Other 40% (2/5) - 25% (11/44) 9% (3/33) 23% (3/13) 20% (19/95)

None 100% (26/26) 100% (4/4) 100% (24/24) 100% (34/34) 100% (8/8) 100% (96/96)
Overall 88% (30/34) 100% (4/4) 75% (115/154) 72% (94/130) 61% (20/33) 74% (263/355)

[4] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo,
E.: Recovering traceability links between code and documen-
tation. IEEE Transactions on Software Engineering 28(10), 970–
983 (2002)

[5] Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc,
Y.G.: A new family of software anti-patterns: Linguistic anti-
patterns. In: Proceedings of the European Conference on
Software Maintenance and Reengineering (CSMR) (2013)

[6] Bavota, G., De Lucia, A., Oliveto, R.: Identifying extract class
refactoring opportunities using structural and semantic cohe-
sion measures. Journal of Systems and Software 84, 397–414
(2011)

[7] Binkley, D., Hearn, M., Lawrie, D.: Improving identifier infor-
mativeness using part of speech information. In: Proceedings
of the International Working Conference on Mining Software
Repositories (2011)

[8] Black, T.R.: Doing Quantitative Research in the Social Sciences:
An Integrated Approach to Research Design, Measurement
and Statistics. Statistics Series. SAGE Publications (1999)

[9] Broder, A.: On the resemblance and containment of docu-
ments. In: Proceedings of the Compression and Complexity
of Sequences, pp. 21–29 (1997)

[10] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineer-
ing: Using UML, Patterns, and Java. Prentice Hall (2003)

[11] Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A.,
Panichella, S.: Improving ir-based traceability recovery via
noun-based indexing of software artifacts. Journal of Software:
Evolution and Process (2013. To appear.)

[12] Caprile, B., Tonella, P.: Restructuring program identifier
names. In: Proceedings of the International Conference on
Software Maintenance, pp. 97–107 (2000)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

35

[13] Corazza, A., Di Martino, S., Maggio, V.: Linsen: An approach
to split identifiers and expand abbreviations with linear com-
plexity. In: Proceedings of the International Conference on
Software Maintenance, (ICSM 2012) (2012)

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introductions to
Algorithms. MIT Press (1990)

[15] Deissenbock, F., Pizka, M.: Concise and consistent naming.
In: Proceedings of the International Workshop on Program
Comprehension (2005)

[16] Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings
via change metrics. In: Proceedings of the International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 166–177 (2000)

[17] Dig, D., Comertoglu, C., Marinov, D., Johnson, R.E.: Auto-
mated detection of refactorings in evolving components. In:
Proceedings of the European Conference on Object-Oriented
Programming, pp. 404–428 (2006)

[18] Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining
source code to automatically split identifiers for software anal-
ysis. In: Proceedings of the International Working Conference
on Mining Software Repositories, pp. 71–80 (2009)

[19] Eshkevari, L.M., Arnaoudova, V., Di Penta, M., Oliveto, R.,
Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of iden-
tifier renamings. In: Proceedings of the 8th International
Working Conference on Mining Software Repositories (MSR
2011), pp. 33–42 (2011)

[20] Fluri, B., Wuersch, M., PInzger, M., Gall, H.: Change distilling:
Tree differencing for fine-grained source code change extrac-
tion. IEEE Trans. Softw. Eng. 33(11), 725–743 (2007)

[21] Fowler, M.: Refactoring: Improving the design of existing code.
Addison-Wesley (1999)

[22] Glaser, B.G.: Basics of grounded theory analysis. Sociology
Press (1992)

[23] Groves, R.M., Fowler Jr., F.J., Couper, M.P., Lepkowski, J.M.,
Singer, E., Tourangeau, R.: Survey Methodology, 2nd edition.
Wiley (2009)

[24] Guerrouj, L., Di Penta, M., Antoniol, G., Guéhéneuc, Y.G.: Ti-
dier: An identifier splitting approach using speech recognition
techniques. Journal of Software Maintenance - Research and
Practice p. 31 (2011)

[25] Gupta, S., Malik, S., Pollock, L., Vijay-Shanker, K.: Part-of-
speech tagging of program identifiers for improved text-based
software engineering tool. In: Proceedings of the International
Conference on Program Comprehension (ICPC) (2013)

[26] Hindle, A., Ernst, N.A., Godfrey, M.W., Mylopoulos, J.: Au-
tomated topic naming to support cross-project analysis of
software maintenance activities. In: Proceedings of the Inter-
national Working Conference on Mining Software Repositories
(MSR), pp. 163–172 (2011)

[27] Howard, M.J., Gupta, S., Pollock, L., Vijay-Shanker, K.: Auto-
matically mining software-based, semantically-similar words
from comment-code mappings. In: Proceedings of the Working
Conference on Mining Software Repositories (MSR) (2013)

[28] Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multilin-
guistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering 28(7),
654–670 (2002)

[29] Kawrykow, D., Robillard, M.P.: Non-essential changes in ver-
sion histories. In: Proceedings of the International Conference
on Software Engineering, pp. 351–360 (2011)

[30] Koschke, R., Canfora, G., Czeranski, J.: Revisiting the delta
ic approach to component recovery. Science of Computer
Programming 60(2), 171–188 (2006)

[31] Kuhn, H.W.: The hungarian method for the assignment prob-
lem. Naval Research Logistics Quarterly 2, 83–97 (1955)

[32] Lawrie, D., Binkley, D.: Expanding identifiers to normalize
source code vocabulary. In: Proceedings of the International
Conference on Software Maintenance, (ICSM), pp. 113–122
(2011)

[33] Lawrie, D., Feild, H., Binkley, D.: Syntactic identifier concise-
ness and consistency. In: Proceedings of the International
Workshop on Source Code Analysis and Manipulation, pp.
139–148 (2006)

[34] Lawrie, D., Morrell, C., Feild, H., Binkley, D.: What’s in a
name? a study of identifiers. In: Proceedings of the Interna-
tional Conference on Program Comprehension, pp. 3–12 (2006)

[35] Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective iden-
tifier names for comprehension and memory. Innovations in
Systems and Software Engineering 3(4), 303–318 (2007)

[36] Lehman, M.M.: Programs life cycles and laws of software
evolution. Proceedings of the IEEE 68(9), 1060–1076 (1980)

[37] Levenshtein, V.I.: Binary codes capable of correcting deletions,
insertions, and reversals. Cybernetics and Control Theory
10(8), 707–710 (1966)

[38] Madani, N., Guerrouj, L., Di Penta, M., Guéhéneuc, Y.G.,
Antoniol, G.: Recognizing words from source code identifiers
using speech recognition techniques. In: Proceedings of the
European Conference on Software Maintenance and Reengi-
neering, pp. 68–77 (2010)

[39] Maletic, J.I., Antoniol, G., Cleland-Huang, J., Hayes, J.H.: In:
International Workshop on Traceability in Emerging Forms of
Software Engineering, p. 462 (2005)

[40] Malpohl, G., Hunt, J.J., Tichy, W.F.: Renaming detection. In:
Proceedings of the International Conference Automated Soft-
ware Engineering, pp. 73–80 (2000)

[41] Marcus, A., Poshyvanyk, D., Ferenc, R.: Using the conceptual
cohesion of classes for fault prediction in object-oriented sys-
tems. IEEE Transactions on Software Engineering 34(2), 287–
300 (2008)

[42] Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a
large annotated corpus of english: the penn treebank. Journal
of Computational Linguistics - Special issue on using large
corpora 19(2), 313–330 (1993)

[43] Miller, G.A.: Wordnet: A lexical database for english. Com-
munications of the ACM 38(11), 39–41 (1995)

[44] Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source
code evolution using abstract syntax tree matching. Software
Engineering Notes 30(4), 1–5 (2005)

[45] Porter, M.F.: An algorithm for suffix stripping. Program 14(3),
130–137 (1980)

[46] Poshyvanyk, D., Marcus, A.: The conceptual coupling metrics
for object-oriented systems. In: Proceedings of the Inter-
national Conference on Software Maintenance, pp. 469–478
(2006)

[47] Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-
based reconstruction of complex refactorings. In: Proceed-
ings of the International Conference on Software Maintenance
(ICSM), pp. 1–10 (2010)

[48] Santayana, G.: The Life of Reason: Introduction and Reason in
Common Sense, vol. 1. Charles Scribner’s Sons (1905)

[49] Sheskin, D.J.: Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All (2007)

[50] Strauss, A.L.: Qualitative analysis for social scientists. Cam-
bridge Univsersity Press (1987)

[51] Takang, A., Grubb, P.A., Macredie, R.D.: The effects of com-
ments and identifier names on program comprehensibility: an
experiential study. Journal of Program Languages 4(3), 143–
167 (1996)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

36

[52] Thummalapenta, S., Cerulo, L., Aversano, L., Di Penta, M.:
An empirical study on the maintenance of source code clones.
Empirical Software Engineering 15(1), 1–34 (2010)

[53] Toutanova, K., Manning, C.D.: Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger.
In: Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC-2000), pp. 63–70 (2000)

[54] Weissgerber, P., Diehl, S.: Identifying refactorings from source-
code changes. In: Proceedings of the International Conference
on Automated Software Engineering (ASE), pp. 231–240 (2006)

[55] Xing, Z., Stroulia, E.: Refactoring detection based on UMLDiff
change-facts queries. In: Proceedings of Working Conference
on Reverse Engineering, pp. 263–274 (2006)

[56] Yang, J., Tan, L.: SWordNet: Inferring semantically related
words from software context. Empirical Software Engineering
(2013)

[57] Zimmermann, T., Weisgerber, P.: Preprocessing CVS data for
fine-grained analysis. In: Proceedings of the International
Workshop on Mining Software Repositories, pp. 2–6 (2004)

[58] Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A.: Mining
version histories to guide software changes. In: Proceedings
of the International Conference on Software Engineering, pp.
563–572 (2004)

Venera Arnaoudova Venera Arnaoudova is
a Ph.D. candidate at the École Polytechnique
de Montréal under the supervision of Pro-
fessor Giuliano Antoniol and Professor Yann-
Gaël Guéhéneuc. In 2008, she received her
master degree in Computer Science from
Concordia University (Montréal, Canada) un-
der the supervision of Professor Constanti-
nos Constantinides. In 2006, she received
her bachelor degree in Computer and Electri-
cal Engineering (Major of Computer Science)

from the engineering school PolytechLille (Lille, France).
Her research interest is in the domain of software evolution and

particularly, analysis of source code lexicon and documentation, em-
pirical software engineering, refactoring, patterns, and anti-patterns.
Website: www.veneraarnaoudova.com

Laleh Eshkevari Laleh M. Eshkevari joined
the PhD program of Department of Computer
Science and Software Engineering of École
Polytechnique de Montréal in fall 2009. She
is a member of SOCCER laboratory and Ptit-
Dej team directed by professor Giuliano An-
toniol and Professor Yann-Gaël Guéhéneuc.
She received her master degree in Computer
Science in 2008 from Concordia University
(Montréal, Canada) under the supervision of
Professor Constantinos Constantinides and

Professor Juergen Rilling. She received her bachelor degree in
Mathematic Applied in Computer Science from Amirkabir University
of Technology (Tehran, Iran). Her research interest is in the domain
of software maintenance and evolution: change impact analysis,
linguistic refactoring, source code analysis, programming languages,
and empirical software engineering. Website: laleh-eshkevari.ca/

Massimiliano Di Penta Massimiliano Di
Penta is associate professor at the Univer-
sity of Sannio, Italy. His research interests
include software maintenance and evolution,
reverse engineering, empirical software engi-
neering, search-based software engineering,
and service-centric software engineering. He
is author of over 180 papers appeared in
international conferences and journals. He
serves and has served in the organizing and
program committees of over 100 conferences

such as ICSE, FSE, ASE, ICSM, ICPC, CSMR, GECCO, MSR,
SCAM, WCRE, and others. He has been general chair of SCAM
2010, WSE 2008, general co-chair of SSBSE 2010, WCRE 2008,
and program co-chair of MSR 2013 and 2012, ICPC 2013, ICSM
2012, SSBSE 2009, WCRE 2006 and 2007, IWPSE 2007, WSE
2007, SCAM 2006, STEP 2005, and of other workshops. He is
steering committee member of ICSM, CSMR, IWPSE, SSBSE,
PROMISE, and past steering committee member of ICPC, SCAM,
and WCRE. He is in the editorial board of the Empirical Software
Engineering Journal edited by Springer, and of the Journal of Soft-
ware: Evolution and Processes edited by Wiley. He is member of
IEEE, IEEE Computer Society, and of the ACM. Further info on
www.rcost.unisannio.it/mdipenta

Rocco Oliveto Rocco Oliveto is Assistant
Professor in the Department of Bioscience
and Territory at University of Molise (Italy).
He is the Director of the Laboratory of
Informatics and Computational Science of
the University of Molise. He received the
PhD in Computer Science from University of
Salerno (Italy) in 2008. His research inter-
ests include traceability management, infor-
mation retrieval, software maintenance and
evolution, search-based software engineer-

ing, and empirical software engineering. He serves and has served
as organizing and program committee member of international con-
ferences in the field of software engineering. In particular, he was the
program co-chair of TEFSE 2009, the Traceability Challenge Chair
of TEFSE 2011, the Industrial Track Chair of WCRE 2011, the Tool
Demo Co-chair of ICSM 2011, the program co-chair of WCRE 2012,
and he will be the program co-chair of WCRE 2013, SCAM 2014,
and ICPC 2015. He is member of IEEE Computer Society, ACM,
and IEEE-CS Awards and Recognition Committee.

Giuliano Antoniol Giuliano Antoniol (Giulio)
Canada Research Chair in Software Change
and Evolution, served as program chair, in-
dustrial chair, tutorial, and general chair of in-
ternational conferences and workshops. He
contributed to the program committees of
more than 30 IEEE and ACM conferences
and workshops. He is a member of the ed-
itorial boards of five software engineering
journals and he acts as referee for all major
software engineering journals.

He is currently Full Professor at the Polytechnique Montréal, where
he works in the area of software evolution, empirical software engi-
neering, software traceability, search based software engineering,
software testing and software maintenance.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

37

Yann-Gaël Guéhéneuc Yann-Gaël
Guéhéneuc is full professor at the
Department of computer and software
engineering of École Polytechnique de
Montréal where he leads the Ptidej team
on evaluating and enhancing the quality
of object-oriented programs by promoting
the use of patterns, at the language-,
design-, or architectural-levels. He is IEEE
Senior Member since 2010. In 2009, he
was awarded the NSERC Research Chair

Tier II on Software Patterns and Patterns of Software. He holds a
Ph.D. in software engineering from University of Nantes, France
(under Professor Pierre Cointe’s supervision) since 2003 and an
Engineering Diploma from École des Mines of Nantes since 1998.
His Ph.D. thesis was funded by Object Technology International,
Inc. (now IBM OTI Labs.), where he worked in 1999 and 2000. His
research interests are program understanding and program quality
during development and maintenance, in particular through the use
and the identification of recurring patterns. He was the first to use
explanation-based constraint programming in the context of software
engineering to identify occurrences of patterns. He is interested
also in empirical software engineering; he uses eye-trackers to
understand and to develop theories about program comprehension.
He has published many papers in international conferences and
journals, including IEEE TSE, Springer EMSE, ACM/IEEE ICSE,
and IEEE ICSM. He is currently (2013-2014) in sabbatical in Korea,
working with colleagues at KAIST, Yonsei U., and SNU.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2312942

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

