
A Study on the Pythonic Functional Constructs’ Understandability
Cyrine Zid

Polytechnique Montréal

Montréal, Québec, Canada

Fiorella Zampetti

University of Sannio

Benevento, Italy

Giuliano Antoniol

Polytechnique Montréal

Montréal, Québec, Canada

Massimiliano Di Penta

University of Sannio

Benevento, Italy

ABSTRACT
The use of functional constructs in programming languages such as

Python has been advocated to help write more concise source code,

improve parallelization, and reduce side effects. Nevertheless, their

usage could lead to understandability issues. This paper reports

the results of a controlled experiment conducted with 209 devel-

opers to assess the understandability of given Pythonic functional

constructs—namely lambdas, comprehensions, and map/reduce/-

filter functions—if compared to their procedural alternatives. To

address the study’s goal, we asked developers to modify code us-

ing functional constructs or not, to compare the understandability

of different implementations, and to provide insights about when

and where it is preferable to use such functional constructs. Re-

sults of the study indicate that code snippets with lambdas are

more straightforward to modify than the procedural alternatives.

However, this is not the case for comprehension. Regarding the

perceived understandability, code snippets relying on procedural

implementations are consideredmore readable than their functional

alternatives. Last but not least, while functional constructs may

help write compact code, improving maintainability and perfor-

mance, they are considered hard to debug. Our results can lead to

better education in using functional constructs, prioritizing quality

assurance activities, and enhancing tool support for developers.

CCS CONCEPTS
• Software and its engineering→ Language features.

KEYWORDS
Functional Programming, Python, Program Comprehension, Em-

pirical Study

ACM Reference Format:
Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, andMassimiliano Di Penta.

2024. A Study on the Pythonic Functional Constructs’ Understandability. In

2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3597503.3639211

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/3597503.3639211

1 INTRODUCTION
Widely-used programming languages have been conceived to be

used by following either the imperative or object-oriented paradigm,

e.g., C or Java. Some of these programming languages have also

adopted constructs inspired by functional programming. This is the

case of Java with the introduction of lambda functions in Java 1.8,

Javascript with the introduction of higher-order functions, and,

last but not least, Python. Such languages are not intrinsically

functional (like Haskell or Scala), but give developers the flexibility

to use functional constructs.

Functional constructs have been advocated to help paralleliza-

tion, avoiding the introduction of side effects in the source code [12,

41]. At the same time, the understandability of such constructs

has been questioned and discussed in previous studies and gray

literature [13, 23, 26, 39].

Let us focus on Python, which is, to date, Github’s second most

used language [10]. Previous research has found that changes to

some Pythonic functional constructs (lambdas, comprehensions,

and map/reduce/filters) induce more fixes than other changes [44].

Despite the discussions in gray literature and the results by Zam-

petti et al. [44], there is a lack of empirical evidence about the

extent to which developers encounter more or less trouble when

using functional constructs than when using their procedural al-

ternative. To bridge this gap, this paper reports the results of a

controlled experiment conducted with 209 paid developers, investi-

gating the extent to which developers encounter difficulties while

understanding and modifying code snippets involving functional

constructs, as opposed to their procedural alternatives. The study

focuses on lambdas, comprehensions, and map/reduce/filter (MRF)

functions, as in previous work [44]. While, as pointed out by previ-

ous work, there are other Pythonic functional constructs one could

consider, we preferred to focus on these because of their wide usage

in Python [1, 6], and because of the inherent task complexity limita-

tions when conducting a controlled experiment. The 209 developers

have been recruited through the Prolific [15] platform. Specifically,

each participant in the experiment had to:

(1) Perform change tasks on functional, as well as procedural

code (for which somebody else received the functional alter-

native);

(2) Provide a perceived, comparative level of understandability

over code snippets written in both fashions; and

(3) Provide qualitative insights about the rationale for using (or

not) the studied functional constructs in everyday develop-

ment tasks.

Findings of the study highlight that: (i) when modifying existing

code snippets, developers perform better with lambdas than with

https://doi.org/10.1145/3597503.3639211
https://doi.org/10.1145/3597503.3639211

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

their procedural alternatives; instead, comprehensionsmake change

tasks worse than their procedural alternatives; (ii) procedural code

is generally perceived as more readable than its functional alter-

native; and (iii) developers found functional constructs useful to

shorten the source code, even if they are challenging to debug.

Results of the study provide empirical evidence on the difficulties

experienced by developers when using functional constructs, also

depending on their type and complexity. This has implications for

developers’ education, prioritizing quality assurance on portions of

code involving certain constructs, and aiding developers to properly

use certain, complex-to-use constructs.

2 THE STUDIED FUNCTIONAL CONSTRUCTS
This section overviews the functional constructs we studied.

1 add = lambda x, y: x + y

2 print(add(3,5))

Listing 1: Lambda expression example.

1 numbers = [1, 2, 3, 4, 5]

2 even_numbers = [x for x in numbers if x % 2 == 0]

Listing 2: List comprehension example.

1 def square(x):

2 return x ** 2

3

4 def multiply(x, y):

5 return x * y

6

7 numbers = [1, 2, 3, 4, 5, 6, 7]

8 squared_numbers = map(square , numbers)

9 product = reduce(multiply , numbers)

Listing 3: Map and Reduce functions examples.

1 def is_even(x):

2 return x % 2 == 0

3

4 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

5 even_numbers = filter(is_even , numbers)

Listing 4: Filter function example.

Lambda Functions. A lambda function is an anonymous func-

tion that can be defined on the fly in the code (as in Listing 1). It

can accept any number of arguments, though it is constrained to

contain only a single expression. A lambda expression in Python is

defined as:

lambda arguments: expression.
List Comprehensions. A list comprehension iterates over a list

of objects, checks for a specified condition (if any), and computes an

expression. This computed value becomes an element in the newly

created collection (as shown in Listing 2). A list comprehension can

be defined with the following syntax:

[expression for item in iterable if condition]
Map/Reduce/Filter Functions. Map(), reduce() and filter(),

are three high-order Python functions. They take a function as a

parameter and return a function. They have a similar syntax:

FUN (function, iterable)

where FUN is either map, filter, or reduce.
map() applies a given function to all items in an iterable (e.g.,

a list) and returns an iterator storing the obtained values (as in

Listing 3 where it returns the square of each element).

reduce() systematically applies a function (requiring two argu-

ments) to the items within an iterable, progressively producing a

singular value. The initial application is carried out on the first two

elements of the iterable, followed by applications involving the par-

tial result and the subsequent element. As shown in Listing 3, the

reduce() function calculates the product of the values contained

in the numbers iterable.
filter() applies a given function to each element of the iterable,

producing a Boolean result, keeping only the elements for which

the return value is True. As an example, in the Listing 4, the filter

function retains only the even numbers from the list.

3 STUDY DEFINITION AND PLANNING
The object of this study are Pythonic functional constructs, and,

specifically, lambdas, comprehensions, and MRF. The quality focus
refers to their understandability, especially during a change task.

The perspective is of researchers interested in distilling guidelines

for developers, educators, and researchers/tool builders to facilitate

the comprehension and maintenance of Python code. The context
consists of 209 paid developers recruited through the Prolific plat-

form, and code snippets written using functional constructs, as

well as their procedural alternatives. The study aims to address the

following three research questions:

(1) RQ1: How difficult is it to modify code snippets relying on
functional constructs compared to their procedural alterna-
tives? This research question aims to assess, through change

tasks, the understandability of code written using functional

constructs versus their procedural alternatives.

(2) RQ2: To what extent do functional constructs influence the
perceived source code understandability? Here we assess the
perceived understandability of a code snippet using a func-

tional construct versus its procedural alternative. This is

achieved by showing two functionally equivalent code snip-

pets written with and without functional constructs.

(3) RQ3: Why do developers use functional constructs, and in
which scenarios? The last research question qualitatively

investigates the reasons why and when developers use func-

tional constructs, but also the perceived disadvantages.

3.1 Context Selection - Study Participants
The study was conducted by leveraging 209 paid developers re-

cruited using the Prolific [15] platform. As highlighted by Tahaei

and Vaniea [40], this is the only platform that could involve an ade-

quate number of participants who pass the programming questions.

Note that Prolific has been previously used in software engineering

research on defect prediction [17], or tool evaluation [32]. Existing

studies [7, 33, 35] highlighted the “vague meaning of programming

experience”. Therefore, we have complemented a set of constraints

on the Prolific platform, e.g., in terms of education, skills, and work-

ing experience to recruit developers, with further filters, e.g., filter-
ing out all respondents not able to complete any of the six change

tasks. Specifically, we have selected the participants on several

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

requirements: (i) the subject of study was computer science, (ii)

they declared to know computer programming, (iii) Python was

listed as one of the known programming languages, and (iv) for

the education level, we limited our choices to technical/community

college, undergraduate (e.g., bachelor), graduate (e.g., master), or

doctorate degree.

Given that we estimated a task duration between 40 minutes and

1 hour, and considering our available budget, we offered a payment

of 12 UK Pounds-hour (the minimum as per Prolific’s policy is 8

UK Pounds-hour).

3.2 Context Selection - Study Objects
Since our experiment shows code snippets to developers and asks

them to perform certain tasks, we need to properly select represen-

tative ones. To avoid artificial code snippets, we started identifying

random instances of the investigated functional constructs from

an existing dataset [44]. The selection was made to select, for each

type of functional construct, a set of code elements with varying

complexity. The complexity is computed as McCabe’s cyclomatic

complexity [24], by adding one to the number of conditionals, iter-

ations, and generators.

In particular, we picked: 10 lambda usages with a complexity

between 1 and 4; 10 comprehension usages, with a complexity

between 2 and 6; and 3 map, 3 reduce, and 3 filter usages.

After the selection, we isolated each code snippet from its sur-

rounding context, by creating constant initialization for the used

variables. Then, for each code example, one author produced the

procedural alternative, that has been double-checked by a different

author, both having at least three years of Python programming ex-

perience. Specifically, we replaced lambda with an explicit function

definition, while comprehensions have been replaced by nested

loops and conditionals. For MRF, we replaced their invocation with

the explicit implementation of the required operation, e.g., iterating
through all the elements of a list and applying to all of them the

desired operation. As a last step, we made sure that each code snip-

pet produced an output so that it was possible to objectively assess

its outcome, as well as we verified that, given the same input, the

output of the functional code snippet was perfectly similar to the

one obtained with the “hand-crafted” procedural alternative.

3.3 Dependent and independent variables
The study dependent variable is the code understandability, mea-

sured as change task correctness for RQ1, and perceived understand-

ability for RQ2. The independent variable is the use of a functional
construct, as opposed to its procedural alternative. While the analy-

sis has been done on multiple constructs (lambdas, comprehensions,

and MRF), this is not a variable of the study, as we do not directly

compare constructs with each other. In addition, we account for

co-factors related to constructs’ complexity and developers’ charac-

teristics. In the following section, we further detail how variables

are measured, and what co-factors are.

3.4 Experiment Design and Planning
The experiment consists of a series of questions, asked to each

participant through a Web-based questionnaire (a Google form).

The questionnaire was organized into 4 sections.

1 lst =[[[i + j + k for k in range(4, 7)] for j in

range(1, 4)] for i in range(2, 5)]

2 print(lst)

Code snippet with functional constructs: Group 6

Question: Please modify the code so that it will generate a matrix

where the elements in the rows are summed if the indexes are all

even, otherwise are multiplied.

Figure 1: Example of change task for list comprehensions

1 lst=[]

2

3 for i in range(2, 5):

4 lt=[]

5 for j in range(1, 4):

6 l=[]

7 for k in range(4, 7):

8 l.append(i + j + k)

9 lt.append(l)

10 lst.append(lt)

11

12 print(lst)

Code snippet with procedural constructs: Group 5

Question: Please modify the code so that it will generate a matrix

where the elements in the rows are summed if the indexes are all

even, otherwise are multiplied.

Figure 2: Example of change task for the procedural counter-
part of the list comprehension reported in Figure 1

i = [1, 2, 3, 4, 5, 6]

def function(i):
 return tuple((-1 if j is None else j for j in i[1:4]))

print(function(i))

i = [1, 2, 3, 4, 5, 6]
print((lambda i: tuple((-1 if j is None else j for j in i[1:4])))(i))

Please select a choice:

1. The first code is definitely easier to understand than the second code

2. The first code is slightly easier to understand than the second code

3. There are no differences in terms of understandability

4. The second code is slightly easier to understand than the first code

5. The second code is definitely easier to understand than the first code

Figure 3: Example of understandability task for lambda and
its procedural alternative

In the first section, we assess the participants’ understanding
of code snippets by letting them perform six change tasks. This has

been previously done in other studies on program comprehension

(e.g., [34, 36, 43]), allowing for an objective evaluation, and better

reflecting a scenario in which a developer needs to understand a

code snippet during evolution tasks. Specifically, we show a code

snippet and ask participants to modify it. Three tasks include code

snippets using functional constructs: one with lambda, one with

comprehension, and one with map/reduce/filter. The other three

tasks (interleaved with the former) feature procedural alternatives

of functional code that different participants are changing. Figure 1

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

Table 1: Assignment of change and comparison tasks across the ten experimental groups. MRF means map/reduce/filter. Note
that for each task, there is the identifier of the task, followed (for the change tasks) by a letter indicating whether the snippet
used the (F)unctional or (P)rocedural paradigm, and the complexity in parenthesis (for lambda and comprehension only).

Group Change Tasks Comparison Tasks
Lambda_1 Lambda_2 Comp_1 Comp_2 MRF_1 MRF_2 Lambda Comp. MRF

1 lambda-a-F (1) lambda-g-P (4) comp-a-F (2) comp-f-P (3) filter-a-F map-c-P lambda-h (2) comp-b-(4) reduce-a

2 lambda-b-P (2) lambda-g-F (4) comp-a-P (2) comp-f-F (3) filter-a-P map-c-F lambda-c (3) comp-d (5) reduce-c

3 lambda-a-P (1) lambda-h-F (2) comp-b-P (4) comp-g-F (2) map-a-F reduce-b-P lambda-g (4) comp-f (3) filter-a

4 lambda-b-F (2) lambda-i-P (3) comp-b-F (4) comp-g-P (2) map-a-P reduce-b-F lambda-d (2) comp-a (2) filter-c

5 lambda-c-F (3) lambda-h-P (2) comp-c-F (2) comp-h-P (4) reduce-a-P filter-b-F lambda-b (2) comp-j (6) map-c

6 lambda-c-P (3) lambda-d-F (2) comp-c-P (2) comp-h-F (4) reduce-a-F filter-b-P lambda-i (3) comp-g (2) map-a

7 lambda-d-P (2) lambda-i-F (3) comp-d-P (5) comp-i-F (3) map-b-F filter-c-P lambda-a (1) comp-h (4) reduce-b

8 lambda-e-F (3) lambda-j-P (2) comp-d-F (5) comp-i-P (3) map-b-P filter-c-F lambda-f (1) comp-e (3) reduce-a

9 lambda-e-P (3) lambda-f-F (1) comp-e-P (3) comp-j-F (6) filter-b-F reduce-c-P lambda-e (3) comp-c (2) map-b

10 lambda-f-P (1) lambda-j-F (2) comp-e-F (3) comp-j-P (6) filter-b-P reduce-c-F lambda-e (3) comp-i (3) map-c

illustrates an example of a change task for list comprehension

(assigned to group 6) while its procedural alternative, assigned to a

different experimental group (group 5), is depicted in Figure 2.

The second section consists of three questions asking the per-

ceived ease of understandability of a functional construct and its

(functionally equivalent) procedural alternative. Each participant

receives three pairs of code snippets, one related to lambda, one to

comprehension, and one to MRF. We ask participants to perform

the assessment using a 5-level Likert scale [28], as illustrated in

Figure 3. To mitigate possible ordering bias, we change the order

in which we show the code snippets: some participants receive the

functional before the procedural, and vice versa. Furthermore, to

mitigate risks due to “random” answers, we also ask the participants

to describe the behavior of the code snippet, so we were sure they

understood its meaning.

The third section consists of four questions asking the reasons

for using functional constructs, as well as the procedural alterna-

tives, e.g., “If you use lambda functions regularly, can you please
explain the reasons why you are using them compared to their proce-
dural alternatives? Please use None as an answer in case you do not
use them regularly.”

The fourth section (optional), collects demographics. We ask

about (i) the highest degree earned, (ii) the current working position,

(iii) the years of development experience, (iv) and, the frequency of

usage of each of the considered functional constructs by providing

as options: Never; Less than 25% of the development tasks; Between

25% and 75% of the development tasks; and More than 75% of the

development tasks. The declared usage frequency will be used as

one of the criteria to discard responses.

Table 1 summarizes the assignment of change (RQ1) and com-

parison (RQ2) tasks to the study participants. For the change tasks,

we indicate the type of construct being studied, whether we show

the (F)unctional construct or its (P)rocedural alternative, and, for

lambda and comprehension, the complexity of the construct within

the code snippet (in parenthesis). As the table shows, we have 10

experimental groups, designed with the following constraints:

• For lambda and comprehension, participants in the same

group receive code snippets with constructs of different com-

plexity. As MRF mainly apply a function (which from the

client side may even be a black box) to each data structure

entry, complexity was not considered a relevant factor, so

we have not considered their complexity in both the experi-

mental design and the analysis methodology.

• The comparison tasks are designed by showing the func-

tional before the procedural or vice versa to different experi-

mental groups.

• For MRF, the experimental groups are designed so that each

participant receives a map example, a reduce example, and a

filter example, i.e., one for the first change task, one for the
second change task, and one for the comparison.

3.5 Experiment Execution
Before conducting the experiment, its design was submitted to a

University Ethical Board for their approval, as the study involved

humans. After receiving the approval, we proceeded with the oper-

ation, administering the tasks to the study participants. To avoid

having the same person in different experimental groups to earn

money (this was explicitly disallowed by the protocol we published),

we created 10 different Web forms, and with them, 10 sequential

“Studies” on Prolific. After each participant completed the ques-

tionnaire, one author (i) checked whether the participant had not

already participated in a different previous experimental group, and

(ii) performed a sanity check to guarantee questions were answered.

If such checks passed, the author approved the payment, otherwise,

the participant was discarded. Where necessary (i.e., having fewer

participants), we extended the invitation so that we ended up with

at least 20 answers for each experimental group. Out of 248 returned

questionnaires, we discarded 39, of which 18 did not pass the sanity

check, 14 have never used any of the studied functional constructs,

and 7 did not provide any correct answer for all six change tasks.

3.6 Results Collection and Processing
After the collection of the results from the 10 experimental groups,

we analyzed the answers. First, we excluded participants who de-

clared having never used any of the considered functional con-

structs. However, we kept those that only used some constructs,

e.g., lambda and comprehension, but they are only considered for

the questions related to that construct.

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

For the change tasks, each code snippet produced by the par-

ticipants was scrutinized to check whether the change was imple-

mented and the output was not faked (e.g., the code snippet just
produced some code generating the required output). After that,

the code snippets were executed through a test script, comparing

the scripts’ output with the expected one. The outcome of each

change task was considered correct if the test passed, wrong in case

of run-time errors or failing test. Using the results of this analysis,

we also excluded (from all the analyses of our study) 7 participants

who performed all tasks wrongly.

For the comparison tasks, there are two aspects to account for,

namely the description of the functionality implemented by the

showed code snippet, and the perceived understandability. While

the latter was trivial to collect and analyze, for the former, two au-

thors cooperatively scrutinized the responses describing the code

snippet’s behavior. Each response was classified into four cate-

gories: (i) correct, (ii) somewhat correct (e.g., some details about

the behavior were missing, but, overall, the respondent understood

the general behavior), (iii) wrong, and (iv) automatically generated.

For the latter, the authors used GPTZero [27] to check whether the

produced text was likely to be AI-generated. We have considered

this to be the case if the outcome of GPTZero reads: “Your text is
likely to be written entirely by AI”.

For the reasons for using functional constructs, as well as
their procedural alternatives, we applied open card-sorting [38]

on the provided answers. Also in this case, we excluded all answers

likely to be AI-generated based on the outcome of GPTZero [27].

On the remaining answers, two authors (annotators in the follow-

ing) performed a joint categorization of 20 responses to agree on

the labeling criteria. After that, they used an online spreadsheet

to independently categorize the remaining responses. Specifically,

the annotators could select a category from a list of possible ones.

When a new category was required, the annotator could add it to

the list, so it became available to both of them. Note the sheet was

designed so that each annotator could assign multiple categories to

the same answer when a respondent provided multiple reasons for

using a construct. To assess the quality of the manual labeling, we

used Krippendorff’s 𝛼 [19] reliability coefficient. This procedure

can handle missing codes, as well as the presence of multiple cate-

gories assigned to the same answer. The two annotators achieved an

𝛼 = 0.87 (very strong) concerning the reasons for using functional

constructs, and 𝛼 = 0.70 (strong) for reasons behind preferring the

procedural alternatives.

3.7 Analysis Methodology
In the following, we describe the methodology used to address the

three research questions.

To address RQ1, for each functional construct, we exclude data

points for respondents who never used the construct. This left 160

valid responses for lambdas, 192 for comprehensions, and 159 for

MRF. After that, we statistically analyze the remaining data points.

Specifically, to perform the statistical analysis of the results, we

need to use a procedure that tests the relationship between the

correctness of the change task and various factors besides the main

experimental factor. Also, the procedure needs to check the longi-

tudinal, within-subjects effect. To this aim, we use a mixed-effect

logistic model, leveraging the glmer function of the R lme4 package
[2]. We use such a model because it is suitable for an experiment

with dependent samples. More in detail, the participants (through

their identifiers) are the model’s random effect, the dependent vari-

able is the change task correctness, and the independent variables

are:

• Main Factor: Whether the code snippet was shown with

the functional construct or with its procedural alternative;
• Complexity: The effect of the constructs’ complexity (for

lambdas and comprehensions only) and its interaction with

the main factor;

• Approvals: The participants’ number of previous task ap-

provals on Prolific;

• Usage Frequency: The participant self-declared frequency

usage for that type of construct;

• Student: Whether the participant is currently a student, as

declared on Prolific.

Since the glmer procedure involves multiple factors for which p-
values are computed, we adjust them using the Benjamini-Hochberg

procedure [4].

As the experiment design foresees, for MRF, the longitudinal

analysis with the glmer model will only be possible by ignoring

the construct type. The latter is mainly due to having only two

change tasks, one with one of the three functions and a different

one with a different function. For this reason, for MRF, we perform

an additional (unpaired, between subjects) analysis for each specific

function through a logistic generalized linear model (glm). We

complement the test with the Odds Ratio (OR) effect size measure,

where the OR reads as the increasing odds to flip the dependent

variable to true (i.e., correct answer) for a unitary increase of the

independent variable, or, for categorical dependent variables, the

increasing odds when the variable assumes that value.

To address RQ2, for each functional construct, we report the

comparative, perceived level of understandability using diverging

stacked bar charts. Furthermore, we show the relationship between

the results and (i) the declared frequency of usage of the different

functional constructs, as well as (ii) the construct complexity (for

lambda and comprehension only). This is done with an ordinal

logistic regression model, implemented through the polr function
of the R MASS package [42]. In this case, the OR indicates how the

unitary increment of an independent variable increases the odds

of a unitary increase of the dependent variable. Also in this case,

p-values are adjusted with the Benjamini-Hochberg procedure [4].

Finally, to address RQ3, we report and discuss the elicited rea-

sons for using functional constructs, as well as their procedural

alternatives.

4 STUDY RESULTS
In the following, after reporting the demographics of the study

participants, we report and discuss the study results.

4.1 Participants’ Demographics
Although demographic questions were optional, all participants

answered them. In terms of highest education qualification, 122

out of 209 participants hold a bachelor’s degree, 41 have a master’s

degree, 4 have received a Ph.D., and the remaining 42 have a high

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

51%

68%

75%

49%

32%

25%

MRF

Comprehension

Lambda

100 50 0 50 100
Percentage

Response Never Less than 25% Between 25% and 75% More than 75%

Figure 4: Declared construct usage.

Table 2: Number and percentage of correct/wrong tasks for
functional constructs and their procedural alternatives

Construct Functional % Corr. Procedural % CorrCorr. Wrong Corr. Wrong
Lambda 112 98 53.33 115 95 54.76

Compr. 99 111 47.14 114 96 54.29

MRF 80 130 38.10 85 125 40.48

Table 3: RQ1: Mixed-effect logistic regression relating the use
of lambdas with the correctness of the change task

AIC BIC logLik deviance df.residuals
438.3 468.5 -211.2 422.3 314

Scaled residuals:

Min 1Q Median 3Q Max
-1.98 -0.95 0.49 0.85 1.44

Random effects:

Groups Variance Std.Dev.
User (Intercept) 0.2299 0.4795

Number of obs: 322, groups: User, 160

Fixed effects:

OR Estimate Std.Error z value Pr(>|z|)
(Intercept) 3.73 1.32 1.12 1.17 0.24

MainFactorProc 0.11 -2.19 0.67 -3.29 <0.01
Compl. 0.75 -0.29 0.18 -1.55 0.24

Usage Freq. 1.32 0.27 0.23 1.20 0.24

Approvals 1.00 -0.00 0.00 -1.41 0.14

StudentTrue 0.35 -1.04 0.88 -1.18 0.24

MainFactorProc:Compl. 2.67 0.98 0.28 3.56 <0.01

school diploma while being undergraduates. For what concerns

development experience, 26 out of 209 participants declare to have

between 5 and 10 years of development experience, while 183 have

less than 5 years of experience. Hence, our sample is, in its majority,

representative of junior/average-seniority developers.

Figure 4 summarizes the declared usage of the functional con-

structs object of the study. As the figure shows, 49% of the partic-

ipants use comprehensions for over 25% of their tasks, while for

MRF this happens only for 32% of the participants, and for lambda

only for 25% of them.

4.2 RQ1: How difficult is it to modify code
snippets relying on functional constructs
compared to their procedural alternatives?

Table 2 reports the number of correct and wrong tasks for func-

tional constructs and their procedural alternatives. Looking at it,

we can only state that for comprehension, the percentage of correct

answers is lower (47.14%) for the functional than for the procedural

Table 4: RQ1: Mixed-effect logistic regression relating the use
of comprehensions with the correctness of the change task

AIC BIC logLik deviance df.residuals
534.7 566.3 -259.3 518.7 378

Scaled residuals:

Min 1Q Median 3Q Max
-1.64 -0.96 0.62 0.99 1.59

Random effects:

Groups Variance Std.Dev.
User (Intercept) 0 0

Number of obs: 386, groups: User, 192

Fixed effects:

OR Estimate Std.Error z value Pr(>|z|)
(Intercept) 1.15 0.14 0.89 0.16 0.88

MainFactorProc 6.11 1.81 0.60 3.00 0.02
Compl. 1.02 0.02 0.11 0.15 0.88

Usage Freq. 0.86 -0.15 0.16 -0.94 0.61

Approvals 1.00 -0.00 0.00 -1.12 0.61

StudentTrue 1.19 0.18 0.66 0.27 0.88

MainFactorProc:Compl. 0.65 -0.43 0.17 -2.58 0.03

Table 5: RQ1: Mixed-effect logistic regression relating the use
of MRF with the correctness of the change task

AIC BIC logLik deviance df.residuals
443.0 465.6 -215.5 431.0 314

Scaled residuals:

Min 1Q Median 3Q Max
-0.92 -0.89 -0.76 1.12 1.52

Random effects:

Groups Variance Std.Dev.
User (Intercept) 0 0

Number of obs: 320, groups: User, 159

Fixed effects:

OR Estimate Std.Error z value Pr(>|z|)
(Intercept) 1.64 0.50 0.96 0.52 0.93

MainFactorProc 0.95 -0.05 0.23 -0.23 0.93

Usage Freq. 0.74 -0.30 0.18 -1.60 0.55

Approvals 1.00 -0.00 0.00 -0.29 0.93

StudentTrue 0.94 -0.07 0.76 -0.09 0.93

alternative (54.29%). For lambda and MRF, the difference is again in

favor of the procedural, yet the difference is 1-2% only.

Table 3 shows the results of the mixed-effect model for the

lambda construct. As the table shows:

(1) There is a statistically significant effect of the main factor.

Specifically, giving procedural code, in general, reduces the

odds of 𝑂𝑅 = 0.11 to implement a correct change;

(2) The complexity alone does not play a statistically significant

effect;

(3) There is a positive statistically significant interaction be-

tween the main factor and the complexity of the construct.

Specifically, if the participant receives procedural code, in-

creasing its complexity increases 2.67 times the odds of cor-

rectly implementing the change, compared to those who

receive its functional alternative;

(4) Participant-related metrics (Usage Frequency, Approvals,

and Student status) do not play a statistically significant role.

Overall, we can conclude that when the complexity of the lambda

increases, it is easier to correctly modify the code snippet by oper-

ating on its procedural alternative, i.e., modify a separate function.

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 6: RQ1: Logistic regression relating the use of map with
the correctness of the change task (AIC=121)

Estimate Std.Error z value Pr(>|z|)
(Intercept) 16.48 1370.51 0.01 0.99

MainFactorProc 0.67 0.48 1.39 0.82

Usage Freq. -0.03 0.38 -0.09 0.99

Approvals 0.00 0.00 -0.07 0.99

StudentTrue -15.75 1370.51 -0.01 0.99

Table 7: RQ1: Logistic regression relating the use of reduce
with the correctness of the change task (AIC=118)

Estimate Std.Error z value Pr(>|z|)
(Intercept) -13.20 1696.36 -0.01 0.99

MainFactorProc -0.26 0.47 -0.56 0.99

Usage Freq. -0.83 0.44 -1.87 0.30

Approvals 0.00 0.00 -0.36 0.99

StudentTrue 14.38 1696.36 0.01 0.99

Table 8: RQ1: Logistic regression relating the use of filter with
the correctness of the change task (AIC=157)

Estimate Std.Error z value Pr(>|z|)
(Intercept) -15.80 1383.44 0.01 0.99

MainFactorProc -0.06 0.40 -0.16 0.99

Usage Freq. -0.18 0.33 -0.54 0.99

Approvals 0.00 0.00 -0.76 0.99

StudentTrue 15.56 1383.44 0.01 0.99

Table 4 shows the results of the mixed-effect model for the com-

prehension construct. In this case:

(1) The main factor has a statistically significant effect. However,

in this case, giving procedural code increases the odds of

correctly implementing the change (𝑂𝑅 = 6.11);

(2) The complexity alone does not have a statistically significant

effect;

(3) The main factor has a statistically significant interaction

with the complexity, yet the effect is the opposite of what

was reported for lambdas. When procedural code is used,

an increase of complexity reduces the odds of 𝑂𝑅 = 0.65

for correctly implementing the change. Possibly, developers

better inspect loops and conditionals in a comprehension

expression than in a (longer) procedural code.

(4) Participant-related metrics do not play a statistically signifi-

cant role.

For MRF (see Table 5) we were unable to observe any statistically

significant difference. However, as mentioned before, the paired

analysis is not sufficient for MRF, because participants received,

over the two change tasks, code snippets dealing with different

functions.

Therefore, we performed an unpaired analysis for each function

whose results (see Tables 6, 7, 8) did not report any statistically

significant difference. A possible reason could be the relative sim-

plicity of the functions called by the MRF (needed by the controlled

61%

60%

67%

70%

76%

84%

26%

19%

18%

18%

18%

6%

14%

21%

14%

12%

6%

10%

Filter

Reduce

Map

MRF

Comprehension

Lambda

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 5: Perceived understandability of functional con-
structs, compared to their procedural alternative (low values
indicate a preference towards the procedural)

Table 9: RQ2: Ordinal logistic regression results of the rela-
tionship between perceived understandability of the func-
tional constructs and (i) participants’ usage frequency, and
(ii) constructs’ complexity (except for MRF)

Lambda (90 data points)

OR Estimate StdError t-value p-value
Usage Freq. 2.29 0.83 0.31 2.65 0.02

Compl. 0.88 -0.13 0.18 -0.73 0.47

Comprehension (120 data points)

OR Estimate StdError t-value p-value
Usage Freq. 1.49 0.40 0.22 1.84 0.07

Compl. 0.77 -0.26 0.11 -2.27 0.04
MRF (103 data points)

OR Estimate StdError t-value p-value
Usage Freq. 1.79 0.58 0.25 2.31 0.02

experiment setting), and, consequently, of their procedural alterna-

tive.

RQ1 Summary: Procedural code is easier to modify than com-

plex lambdas. In contrast, complex comprehensions are easier

to modify than procedural code for list construction. For MRF,

no statistically significant differences were found.

4.3 RQ2: To what extent do functional
constructs influence the perceived source
code understandability?

Figure 5 shows the perceived understandability of different func-

tional constructs compared to their procedural alternatives. Values

on the 1-2 side indicate a strong preference towards the procedural

alternative, while 4-5 indicate a better-perceived level of under-

standing for the functional constructs. The study participants al-

most always prefer the procedural code, and this is particularly

true for lambdas, where only 6% of the participants have a better-

perceived level of understanding for the functional alternative. As

shown in the RQ1 results, this is the construct for which an in-

creasing level of complexity makes the changes more error-prone.

Comprehension is, instead, the construct for which there is a rela-

tively larger percentage of positive answers (26%). Indeed, as found

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

Table 10: Reasons for using functional and procedural code

Reason Lambdas Comp. MRF Proc.

Coding time 11 12 10 2

Ease of use 4 10 8 7

Maintainability 14 9 14 6

Performance 7 28 23 6

Readability/Understandability 19 89 33 27

Size 41 76 39 –

Lack of knowledge – – – 16

Project constraints – – – 5

Simplify debugging – – – 9

in the RQ1 results, when the complexity increases, the study partic-

ipants made fewer errors when modifying comprehensions than

when modifying their procedural alternatives. The percentage of

positives for MRF (18%) is in between lambda and comprehension,

with small differences between the three functions. In this case,

while the perceived level of understanding appears to be in fa-

vor of the procedural alternative, this was not reflected by better

performance in the change tasks.

Table 9 reports the results of the ordinal logistic regression in-

vestigating the relationship between the perceived ease of under-

standing of the constructs and the construct usage frequency, as

well as the constructs’ complexity (except for MRF). In all cases, the

ease of understanding positively correlates with usage frequency,

with statistically significant p-values for lambda and MRF, and

marginally significant p-value for comprehension. The complexity

is statistically significant, with a negative effect (𝑂𝑅 = 0.77) for

comprehension, while it is not statistically significant for lambda.

RQ2 Summary: Functional constructs are, in general, per-

ceived as more challenging to understand than their procedural

alternatives. Such developers’ perception depends on the con-

structs’ usage frequency, as well as the construct’s complexity.

4.4 RQ3: Why do developers use functional
constructs, and in which scenarios?

Table 10 reports the results of the open coding for what concerns

the reasons for using lambdas, comprehensions, and MRF, as well as

their procedural alternatives. As it can be seen, the first five reasons

are shared across both functional constructs and their procedural

alternatives. Size is specific for using functional constructs, while
Lack of knowledge, Project constraints, and Simplify debugging are

specific for preferring their procedural alternatives.

In the following, we provide a discussion of the reasons, together

with examples of what is being highlighted by our participants.

Coding time.When implementing or enhancing features, devel-

opers tend to opt for the paradigm that ensures better productivity.

Specifically, for lambdas, respondents mention the saved time in-

stead of defining a function. Of course, the latter is true in all cases

where the function does not require to be used more than once in

the code, i.e., P65 stated “it’s a waste of time to define a function if
all I’m ever going to do with it is pass it to another function once”.
As regards the usage of comprehensions, the save in coding time

seems, as reported by P184, directly related to the total number

of lines to be written “to gather together a sub-list”. For MRF, de-

velopers motivate their use because as stated by P161, using MRF,

it is possible to “effortlessly reuse a function throughout different
sections of your code”. However, deciding whether to use the func-

tional/procedural alternative is a trade-off between saved coding

time and code readability, i.e., “They save time and don’t compromise
the readability as much as lambda” (P59).

As the last column of Table 10 shows, coding time may also be a

reason for opting towards the procedural alternative. However, by

preferring the procedural alternative, reduced coding time may lead

to less readable code, hence they may be preferred when nobody

else has to look at the same piece of code, i.e., P1 stated that “ if
I am going to be the only looking at my code I care less about how
clean it looks. It takes less time to just manipulate variables directly
rather than sending them to a function and getting the output.”

Ease of use. Coding time is not the only way to measure devel-

opers’ productivity. A different proxy can be related to how simple

it would be to deal with the construct, taking into account the task

at hand. Specifically, for lambdas, P194 stated that “they are much
easier to write and can usually fit on one line”. About comprehen-

sions, participants highlight the simplicity in translating the logic of

the feature to be implemented, i.e., P133 stated “the way I think can
be easily translated into the code”. For MRF, developers recognize the

simplicity in properly applying the same operation “to all members
of a list.’ (P120). Ease of use, is also a reason for opting towards the

procedural alternative, e.g., P44 reported: “it’s sometimes easier to
write code idea straightforward than making it short and clean”.

Maintainability. For what concerns lambdas, developers men-

tion the simplicity in changing them when needed, as well as the

reduction of redundant code due to creating functions, e.g., “they re-
duce boilerplate” (P31). The latter also applies to comprehensions, for

which P195 highlights that “they can help to reduce code duplication
and make the code more maintainable". Furthermore, P180 mentions

the reduced defect-proneness “mak[e] the code more predictable,
easier to test, and less prone to bugs." As for MRF, maintenance be-

comes easier as one avoids writing the same logic over and over

again, and, more importantly, "already implemented constructs be-
have better than ad-hoc written constructs" (P75). However, seven
respondents point out maintainability reasons in favor of the proce-

dural paradigm. This is the case in scenarios where it is important

to have better control of the code under development, as well as

flexibility or customization options, e.g., P114 highlighted: “such as
when the operation to be performed on each element of a list depends
on complex conditions or involves side effects”.

Performance. Functional programming is mainly intended to

avoid side effects, as well as to improve performance [12, 41]. This

has been confirmed by our respondents. Specifically, for lambdas,

P164 mentions that “They are more efficient, as they can take ad-
vantage of the computational resources available on the server and
can be executed in parallel". For comprehensions, P108 reports that

they “can be faster than for loops because they are optimized for this
use case in the Python interpreter". However, P55 highlights that

speed matters only when processing large datasets. This is also

true for MRF, for which P93 states that “they’re useful when working
with large iterable since they perform lazy evaluation, which pre-
vents the program from using more memory than needed." Despite

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

such developers’ perceptions, recent research showed contradic-

tory results in terms of the performance benefits introduced by

Pythonic idioms [46]. Finally, five respondents highlight scenarios

where procedural may be better for performance. As an example,

“procedural alternatives may be more performant especially for cer-
tain types of operations or data structures. This can be important in
high-performance or large-scale applications" (P186).

Readability/Understandability. Readability/understandabil-
ity may be better for functional constructs, or for their procedural

alternatives, based on the task at hand. As an example, for compre-

hensions, P96 states that “they’re more elegant and aren’t any less
readable in simple cases, for instance when the condition is simple”.
For MRF, there are contradictory opinions. On the one hand, they

“express intent better” (P16). On the other hand, “they can quickly do
the job they are meant to do, however, they are also possibly confus-
ing" (P122). Furthermore, developers who prefer procedural code

mention that functional constructs “can be more difficult to read and
understand than traditional for loops, especially for developers who
are less familiar with functional programming concepts" (P55).

Size. This category relates to choice due to writing shorter code,

which could impact productivity, understandability, and maintain-

ability. As expected, this reason arises only when looking at why

developers prefer functional constructs. 71 respondents state this

for comprehensions, e.g., P126 reports: “List comprehensions are
typically a single line of code which can make them easier to read
and understand compared to longer multi-line for loops or map/filter
functions.", yet, also, in this case, there may be trade-offs, e.g., “it’s
important for me to use them appropriately and not sacrifice read-
ability for conciseness” (P139). 35 and 33 respondents mention size

as a reason for using lambda, e.g., “they allow for concise function
definitions in a single line of code” (P71), and MRF, e.g., “to write more
compact code as long as readability doesn’t suffer” (P40).

Lack of knowledge. Sometimes, developers make their deci-

sions based on their level of experience with programming language

features. Indeed, 16 respondents admit relying on the procedural

paradigm due to “a lack of familiarity or preference for imperative
programming styles" (P143).

Project constraints. Four respondents state that the decision
behind adopting the procedural paradigm is simply dictated by the

requirements or constraints of the projects they are contributing.

For instance, P202 reports that “non-functional code may be required
or preferred in certain environments or domains that do not support
functional programming”, while P34 states that “some projects may
require the use of non-functional programming constructs due to
compatibility requirements." One aspect being highlighted by P139

deals with the presence of legacy code, where “If a project has a lot
of legacy code that uses non-functional constructs[,] it may be more
practical to continue using those constructs, rather than rewriting the
code using functional constructs."

Simplify debugging. Seven respondents highlight preferring

the procedural paradigm due to the challenges encountered when

debugging “functional” code, also because of the lack of suitable

tool support. Indeed, by adopting functional constructs, it is hard

to trace the flow of data through multiple operations. For instance,

P135 reports that “traditional loops or conditional statements may
be easier to debug than functional constructs, as they provide more
visibility into the program flow and state." Furthermore, the difficulty

in debugging may become more problematic when sharing code,

e.g., “comprehensions are difficult to debug, so I tend to avoid them
when I work in groups” (P172).

RQ3 Summary: The main reasons for using functional con-

structs are writing less code, (perceived) improved performance,

and maintainability. However, debugging functional constructs

is seen as challenging.

5 IMPLICATIONS
This section discusses the study’s implications for researchers/tool

builders, practitioners, and educators.

Researchers and Tool builders should improve the support sys-

tems for writing, testing, and debugging functional constructs. By

enhancing the tools available, developers can be empowered to cre-

ate more robust and efficient code. To this extent, AI-empowered

techniques may support the automated completion, error detection,

and even repair of such constructs. For what concerns testing, a big

gap is represented by the lack of coverage analysis and debugging

tools specific for functional constructs, e.g., loops and conditionals

in comprehensions, which makes the quality assurance activity

more challenging. Another useful recommendation would be to

spot possible performance anti-patterns or, in general, bad smells

in functional constructs, hence suggesting appropriate refactoring

operations [45]. Furthermore, researchers could delve deeper into

the realm of study, employing sophisticated techniques such as

eye-tracking technology and other monitoring tools. By conduct-

ing in-depth analyses, they can gain profound insights into how

developers comprehend and use these constructs. This research

might not only enrich our understanding of the cognitive processes

involved but also pave the way for the design of even more intuitive

and user-friendly programming tools.

Practitioners should ponder the adoption of functional constructs,
factoring in the unique project requirements, coding styles em-

ployed, and the complexity of the task to implement. Developers

have a trade-off: on the one hand, as we found in RQ3, developers

may choose the constructs that better reflect their “thinking" about

the piece of functionality to be implemented. On the other hand, if

a project follows a coding style with fairly limited use of functional

constructs, introducing them through refactoring or when adding

new code may not necessarily be beneficial, but it may rather harm

software understandability. From a different perspective, practi-

tioners should be mindful of the impact on future maintenance

activities, especially for newcomers joining the project. Last, but

not least, practitioners should perform specific testing of functional

constructs, e.g., by achieving constructs’ (branch) coverage. Also,

whenever available, developers should use static analysis tools ca-

pable of suggesting potential bugs or refactoring related to such

constructs. For example, Pylint [21] features some checks specific to

lambdas and comprehension (e.g., unnecessary lambda, unnecessary
comprehension, or consider using comprehension).

Finally, Educators should not only teach the syntax of functional

constructs, but also train students about their quality assurance, e.g.,
through dedicated code inspection and test cases, and understand-

ing. Moreover, it may be desirable to outline and discuss different

development scenarios in which such constructs could be useful or,

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

instead, counterproductive, negatively affecting program compre-

hension.

6 THREATS TO VALIDITY
Threats to construct validity concern the relationship between the-

ory and observation. The main threat is related to how we measure

the understandability of the functional constructs against their

procedural alternatives. We have chosen to assess the understand-

ability during a change task (RQ1), as was done in previous re-

search [34, 36, 43], as well as to ask about the perceived under-
standability in a comparative assessment (RQ2). It is possible that

what we measure might not reflect the achieved level of the con-

struct’s understanding. To mitigate this threat, we correlated, for

each construct, the perceived understandability in terms of ability

to perform a change task (RQ1) with the perceived understandabil-

ity as declared for the comparison task (RQ2) using the Kendall’s

Tau correlation [22]. For all functional constructs, results are never

statistically significant (p-value=0.4 or greater), with a negligible

correlation coefficient (< 0.05). Based on this analysis, we can state

that the perceived understandability does not reflect the correctness

of the change task.

Threats to internal validity concern factors that could have in-

fluenced our results. We controlled for factors such as constructs’

complexity, as well as participants’ demographics, i.e., the declared
level of usage of the construct, the number of approvals on Prolific,

and whether the participant is a student. We are aware that there

could be other factors, beyond our control, that could influence

our results. However, we did our best in keeping the functional

code as close as possible to the original code, and translating each

code snippet into the equivalent procedural alternative with the

same length, complexity, and same identifiers (but loop variables).

Finally, for RQ3, we used GPTZero [27] to check for AI-generated

answers, yet, given the study settings, we could not exclude that

respondents leveraged the Web to provide us insights.

Threats to conclusion validity concern the relationship between

the experimentation and outcome. To answer our research ques-

tions, wherever appropriate, we used tests suitable to the nature

of the observed data (i.e., logistic models, as well as ordinal lo-

gistic models). Since multivariate models involve multiple factors,

p-values are adjusted with the Benjamini-Hochberg correction [4].

Finally, we checked the reliability of our qualitative analysis by

employing a suitable inter-rater agreement measure, i.e., Krippen-
dorff’s 𝛼 [19].

Threats to external validity concern the generalizability of our

findings. The main threat is due to the representativeness of Prolific

workers as real software developers. We have tried to mitigate this

threat as much as possible with (i) participants’ pre-screening, and

(ii) several filters on the collected results. Nevertheless, replications

in other contexts, e.g., classrooms or industrial settings, are desirable.

In particular, experienced Python developers, well used to such

constructs, may exhibit different performance. Truly, it might be

difficult to recruit a large number of such participants, and this was

our primary rationale for choosing Prolific [15].

7 RELATEDWORK
In this section, we discuss related work about (i) functional program-

ming and “Pythonic” constructs, and (ii) program comprehension

studies on source code involving human participants.

7.1 Functional programming and “Pythonic”
constructs

As stated in the introduction, Python can be used with multiple

paradigms. Dyer et al. [6] found that existing open-source code is

largely object-oriented, with few parts that are mainly functional.

After the introduction of lambdas in Java version 8, researchers

started investigating how developers rely on lambdas expressions

and functional operations, given their ability to enable parallelism

and make the code more succinct and readable. Tanaka et al. [41]
showed that lambda is the most accepted function idiom in Java

(16%), while Rao and Chimalakonda [31] found that 78.57% of open-

source Python projects have at least one lambda expression in their

code.

Alexandru et al. [1], conducted an interview-based study on the

usage of “Pythonic” idioms, showing that developers with different

levels of experience have different perceptions of “Pythonic” idioms

in terms of improving source code understandability and perfor-

mance. Concerning the constructs we study, their work points out

the improved understandability and performance for comprehen-

sions, and the improved performance for lambdas.

Lucas et al. [23] conducted a study by examining 66 pairs of

real code snippets before and after the introduction of lambdas

and measuring code readability. Their results did not indicate im-

proved readability due to lambdas. However, when surveying de-

velopers, they perceived that lambda expressions tend to enhance

program comprehension. Taking a different approach, Hanenberg

and Mehlhorn [13] evaluated the readability of lambdas compared

to anonymous inner classes (AICs) in Java, showing that lambdas

without type annotations are more readable than AICs. In our study,

we found that lambdas may generally improve understandability,

unless they become too complex, although developers have a better

understandability perception towards procedural code.

Zheng et al. [47] conducted a mining study to examine the po-

tential impact of collateral side effects on the use of lambdas in

Java programs. The study showed that, sometimes, lambdas are fac-

tored out to improve code extensibility. Gyori et al. [12] proposed
LambdaFicator [9], an approach aimed to facilitate the conversion

of imperative code to functional code using lambdas. On the same

line, Zhang et al. [45] proposed a more general tool able to convert

non-idiomatic code toward 9 types of idioms, including various

types of comprehensions. In a follow-up study, Zhang et al. [46]
studied the performance of such idioms, showing that Python id-

ioms, if used in a realistic development scenario, do not necessarily

introduce benefits in terms of performance.

Finally, Zampetti et al. [44] conducted a mining study to inves-

tigate the extent to which the addition/change of functional con-

structs has higher odds of inducing fixes than other changes. Their

results highlight that lambdas and comprehensions have higher

odds of inducing fixes than MRF. On the one hand, our results

confirm, in general, the perceived higher level of understandability

for procedural alternatives than for functional constructs. On the

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

other hand, we found that the outcomes of the change tasks vary

depending on the construct and its complexity.

7.2 Code comprehension studies with humans
Developers spend a substantial portion of their time comprehending

source code while conducting both development and maintenance

tasks [37]. This has led several researchers to further investigate

developers’ behavior during program comprehension tasks. For in-

stance, Hofmeister et al. [14] studied the effect of different identifier
naming styles on program comprehension during bug localization.

Their results show that source code is more complex to compre-

hend when using only letters and abbreviations as identifier names.

Johnson et al. [18] conducted a controlled experiment involving

275 participants aimed at assessing the readability of “nesting” and

“looping”, highlighting that decreasing the level of nesting will

decrease the developer’s time in properly understanding a code

snippet. On the same line, McCauley et al. [25] conducted a study

involving students to compare their ability to properly comprehend

recursive and iterative programs.

Yu et al. [43] looked at how developers comprehend test code.

By experimenting with 44 developers, they found that the level of

experience with automated tests is an influential factor in properly

understanding and extending an existing test suite.

A different research thread has looked at “atoms of confusion”

in source code, i.e., code elements that tend to negatively impact

program comprehension. Gopstein et al. [11] conducted a study

involving humans to identify 15 atoms of confusion in source code.

On the same line, Langhout and Aniche [20], conducted a controlled

experiment to identify the most prevalent atoms of confusion in

Java source code. de Oliveira et al. [5] conducted an eye-tracking

study to examine how the presence of atoms of confusion impacts

the time developers spend fixating on source code.

We share with all the aforementioned work the goal to study

the impact of certain code constructs on program comprehension.

To the best of our knowledge, ours is the first study with human

participants concerning Pythonic functional constructs.

Some studies leveraged eye tracking to better understand devel-

opers’ behavior during program comprehension tasks. For instance,

Jbara and Feitelson [16] conducted an experiment to measure the

time and effort spent by developers reading and understanding reg-

ular code, i.e., repetitions of the same basic pattern. Peitek et al. [30]
used eye-tracking to record the eye movements of 31 developers

with different levels of expertise (novices and intermediate devel-

opers), to confirm or confute existing knowledge about the effects

of linearity of source code on reading order. Bauer et al. [3] used an
eye-tracker device to shed light on the impact of indentation styles

on program comprehension. Specifically, they asked 22 participants

to provide the output of code snippets with different indentation

styles written in Java. Their results show that indentation does not

significantly influence code comprehension.

Other studies leverage an even more complex setting using med-

ical devices. For instance, Peitek et al. [29] conducted a study with

functional magnetic resonance imaging (fMRI), involving 19 partic-

ipants to observe the comprehension level of code snippets with

different complexity levels. Fakhoury et al. [8] used a new method-

ology consisting of functional Near Infrared Spectroscopy (fNIRS)

and eye tracking devices to properly measure program comprehen-

sion, i.e., the impact of lexical, structural, and readability issues on

developers’ cognitive load during bug localization tasks.

8 CONCLUSION AND FUTUREWORK
This paper reported the results of a controlled experiment in which

we studied the effect of some functional Pythonic constructs—

and specifically lambdas, comprehensions, and map/reduce/filter

(MRF)—on program comprehension. The experiment has been con-

ducted with 209 paid developers recruited from Prolific and con-

sisted of change tasks, comparative assessment of the perceived

understandability, and questions about the developers’ reasons for

(not) using such constructs. Results of the study show that:

(1) Developers using lambda better performed their change

tasks than when using the procedural alternatives, although

this is no longer true when complexity increases. The op-

posite happens for comprehensions, which are generally

more error-prone than their procedural alternatives. How-

ever, when complexity increases, comprehensions become

advantageous, likely because they do not scatter complexity.

No statistically significant differences were found for MRF.

(2) Developers generally perceive functional constructs as more

challenging to understand than their procedural alternatives.

However, this naturally depends on the usage frequency of

such constructs and, for comprehensions, on the constructs’

complexity.

(3) While developers acknowledge code size reduction as a pros

for using functional constructs (without affecting maintain-

ability), they still face challenges when debugging code fol-

lowing the functional paradigm.

In summary, given our participants (withmainly junior ormedium-

level seniority), results tell that the difficulty of understanding and

changing the studied constructs may vary from one construct to

the other, and also depend on the constructs’ complexity.

Future work aims at replicating the study in other contexts,

especially field studies with professionals having extended expertise

with Python, as well as experiments in classroom settings, and at

assessing the advantages/disadvantages of other types of constructs.

Furthermore, given the qualitative feedback, and the implications

stated above, it is desirable to develop suitable tools to better support

developers in writing, testing, and debugging such constructs.

9 DATA AVAILABILITY
The replication package [48] contains (i) the questions and code

examples used in the experiments, (ii) the questionnaire forms, (iii)

detailed results of the qualitative analysis, and (iv) the study results

and the R script to analyze them.

ACKNOWLEDGMENTS
Massimiliano Di Penta acknowledges the Italian PRIN 2020 Project

EMELIOT “Engineered MachinE Learning-intensive IoT system”,

ID 2020W3A5FY. Fiorella Zampetti is partially funded by the PON

DM 1062/2021 Italian Grant.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta

REFERENCES
[1] Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian Proksch,

Harald C. Gall, and Gregorio Robles. 2018. On the usage of pythonic idioms. In

Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2018,
Boston, MA, USA, November 7-8, 2018. ACM, 1–11.

[2] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting

Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1
(2015), 1–48.

[3] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and

Sven Apel. 2019. Indentation: simply a matter of style or support for program

comprehension?. In Proceedings of the 27th International Conference on Program
Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM,

154–164.

[4] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:

A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[5] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva da Costa, Rohit Gheyi,

Guilherme Amaral, Rafael Maiani de Mello, Anderson Oliveira, Alessandro F.

Garcia, Rodrigo Bonifácio, and Baldoino Fonseca. 2020. Atoms of Confusion:

The Eyes Do Not Lie. In 34th Brazilian Symposium on Software Engineering, SBES
2020, Natal, Brazil, October 19-23, 2020. ACM, 243–252.

[6] Robert Dyer and Jigyasa Chauhan. 2022. An exploratory study on the predomi-

nant programming paradigms in Python code. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022. ACM, 684–695.

[7] Felipe Ebert, Alexander Serebrenik, Christoph Treude, Nicole Novielli, and Fer-

nando Castor. 2022. On recruiting experienced github contributors for interviews

and surveys on prolific. In International Workshop on Recruiting Participants for
Empirical Software Engineering.

[8] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola

Adesope. 2020. Measuring the impact of lexical and structural inconsistencies on

developers’ cognitive load during bug localization. Empirical Software Engineering
25 (2020), 2140–2178.

[9] Lyle Franklin, Alex Gyori, Jan Lahoda, and Danny Dig. 2013. LAMBDAFICATOR:

from imperative to functional programming through automated refactoring. In

35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013. IEEE Computer Society, 1287–1290.

[10] Github. 2022. Top-Programming-Languages GitHub 2022 https://octoverse.github.

com/2022/top-programming-languages. (Last access: 08/11/2023).

[11] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-

C. Yeh, and Justin Cappos. 2017. Understanding misunderstandings in source

code. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, Sept. 4-8, 2017. ACM, 129–139.

[12] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. 2013. Crossing the gap

from imperative to functional programming through refactoring. In Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013. ACM, 543–553.

[13] Stefan Hanenberg and Nils Mehlhorn. 2022. Two N-of-1 self-trials on readability

differences between anonymous inner classes (AICs) and lambda expressions

(LEs) on Java code snippets. Empirical Software Engineering 27, 2 (2022), 1–39.

[14] Johannes C. Hofmeister, Janet Siegmund, and Daniel V. Holt. 2019. Shorter

identifier names take longer to comprehend. Empir. Softw. Eng. 24, 1 (2019),

417–443. https://doi.org/10.1007/S10664-018-9621-X

[15] Prolific Inc. 2023. Prolific https://www.prolific.co. (Last access: 08/11/2023).

[16] Ahmad Jbara and Dror G Feitelson. 2017. How programmers read regular code:

a controlled experiment using eye tracking. Empirical software engineering 22

(2017), 1440–1477.

[17] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John C. Grundy. 2021.

Practitioners’ Perceptions of the Goals and Visual Explanations of Defect Pre-

diction Models. In 18th IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 432–443.
https://doi.org/10.1109/MSR52588.2021.00055

[18] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita Sharif.

2019. An Empirical Study Assessing Source Code Readability in Comprehension.

In 2019 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, 513–523.
https://doi.org/10.1109/ICSME.2019.00085

[19] Klaus Krippendorff. 2011. Computing Krippendorff’s alpha-reliability.

[20] Chris Langhout and Maurício Aniche. 2021. Atoms of Confusion in Java. In

29th IEEE/ACM International Conference on Program Comprehension, ICPC 2021,
Madrid, Spain, May 20-21, 2021. IEEE, 25–35.

[21] Logilab and Pylint contributors. 2023. Pylint. https://pylint.pycqa.org/

[22] Jeffrey D Long and Norman Cliff. 1997. Confidence intervals for Kendall’s tau.

Brit. J. Math. Statist. Psych. 50, 1 (1997), 31–41.

[23] Walter Lucas, Rodrigo Bonifácio, Edna Dias Canedo, Diego Marcílio, and Fer-

nanda Lima. 2019. Does the introduction of lambda expressions improve the

comprehension of Java programs?. In Proceedings of the XXXIII Brazilian Sympo-
sium on Software Engineering. 187–196.

[24] Thomas Mccabe. 1996. Cyclomatic complexity and the year 2000. IEEE Software
13, 3 (1996), 115–117.

[25] Renée A. McCauley, Brian Hanks, Sue Fitzgerald, and Laurie Murphy. 2015.

Recursion vs. Iteration: An Empirical Study of Comprehension Revisited. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
SIGCSE 2015, Kansas City, MO, USA, March 4-7, 2015. ACM, 350–355.

[26] Nicolas Vandeput. 2022. List Comprehensions vs. For Loops: It Is Not What You

Think https://towardsdatascience.com/list-comprehensions-vs-for-loops-it-is-

not-what-you-think-34071d4d8207. (Last access: 08/11/2023).

[27] Open AI. 2023. GPTZero https://gptzero.me/. (Last access: 08/11/2023).

[28] AbrahamNaftali Oppenheim. 2000. Questionnaire design, interviewing and attitude
measurement. Bloomsbury Publishing.

[29] Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.

2021. Program Comprehension and Code Complexity Metrics: A Replication

Package of an fMRI Study. In 43rd IEEE/ACM International Conference on Software
Engineering: Companion Proceedings, ICSE Companion 2021, Madrid, Spain, May
25-28, 2021. IEEE, 168–169.

[30] Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the Reading

Order of Programmers?: An Eye Tracking Study. In ICPC ’20: 28th International
Conference on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020.
ACM, 342–353.

[31] A. Eashaan Rao and Sridhar Chimalakonda. 2020. An Exploratory Study Towards

Understanding Lambda Expressions in Python. In EASE ’20: Evaluation and
Assessment in Software Engineering, Trondheim, Norway, April 15-17, 2020. ACM,

318–323.

[32] Brittany Reid, Marcelo d’Amorim, Markus Wagner, and Christoph Treude. 2023.

NCQ: Code Reuse Support for Node.js Developers. IEEE Trans. Software Eng. 49,
5 (2023), 3205–3225.

[33] Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph Treude. 2022.

Software Engineering User Study Recruitment on Prolific: An Experience Report.

CoRR abs/2201.05348 (2022). arXiv:2201.05348

[34] Filippo Ricca, Massimiliano Di Penta, Marco Torchiano, Paolo Tonella, and Mar-

iano Ceccato. 2010. How Developers’ Experience and Ability Influence Web

Application Comprehension Tasks Supported by UML Stereotypes: A Series of

Four Experiments. IEEE Trans. Software Eng. 36, 1 (2010), 96–118.
[35] Daniel Russo. 2022. Recruiting software engineers on prolific. (2022).

[36] Giuseppe Scanniello and Michele Risi. 2013. Dealing with Faults in Source Code:

Abbreviated vs. Full-Word Identifier Names. In 2013 IEEE International Conference
on Software Maintenance, Eindhoven, The Netherlands, September 22-28, 2013. IEEE
Computer Society, 190–199.

[37] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-

prehending studies on program comprehension. In Proceedings of the 25th Interna-
tional Conference on Program Comprehension, ICPC 2017, Buenos Aires, Argentina,
May 22-23, 2017. IEEE Computer Society, 308–311.

[38] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[39] Switowski.com. 2023. For Loop vs. List Comprehension https://switowski.com/

blog/for-loop-vs-list-comprehension. (Last access: 08/11/2023).

[40] Mohammad Tahaei and Kami Vaniea. 2022. Lessons Learned From Recruiting

Participants With Programming Skills for Empirical Privacy and Security Studies.

In 1st International Workshop on Recruiting Participants for Empirical Software
Engineering.

[41] Hiroto Tanaka, Shinsuke Matsumoto, and Shinji Kusumoto. 2019. A study on the

current status of functional idioms in Java. IEICE Transactions on Information
and Systems 102, 12 (2019), 2414–2422.

[42] W. N. Venables and B. D. Ripley. 2002. Modern Applied Statistics with S (fourth ed.).
Springer, New York. http://www.stats.ox.ac.uk/pub/MASS4 ISBN 0-387-95457-0.

[43] Chak Shun Yu, Christoph Treude, and Maurício Finavaro Aniche. 2019. Compre-

hending Test Code: An Empirical Study. In 2019 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA, September
29 - October 4, 2019. IEEE, 501–512.

[44] Fiorella Zampetti, François Belias, Cyrine Zid, Giuliano Antoniol, and Massi-

miliano Di Penta. 2022. An Empirical Study on the Fault-Inducing Effect of

Functional Constructs in Python. In IEEE International Conference on Software
Maintenance and Evolution, ICSME 2022, Limassol, Cyprus, October 3-7, 2022. IEEE,
47–58.

[45] Zejun Zhang, Zhenchang Xing, Xin Xia, Xiwei Xu, and Liming Zhu. 2022. Making

Python code idiomatic by automatic refactoring non-idiomatic Python code

with pythonic idioms. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022. ACM, 696–708.

[46] Zejun Zhang, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Qinghua

Lu. 2023. Faster or Slower? Performance Mystery of Python Idioms Unveiled

with Empirical Evidence. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 1495–1507.

https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://doi.org/10.1007/S10664-018-9621-X
https://www.prolific.co
https://doi.org/10.1109/MSR52588.2021.00055
https://doi.org/10.1109/ICSME.2019.00085
https://pylint.pycqa.org/
https://towardsdatascience.com/list-comprehensions-vs-for-loops-it-is-not-what-you-think-34071d4d8207
https://towardsdatascience.com/list-comprehensions-vs-for-loops-it-is-not-what-you-think-34071d4d8207
https://gptzero.me/
https://arxiv.org/abs/2201.05348
https://switowski.com/blog/for-loop-vs-list-comprehension
https://switowski.com/blog/for-loop-vs-list-comprehension
http://www.stats.ox.ac.uk/pub/MASS4

A Study on the Pythonic Functional Constructs’ Understandability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[47] Mingwei Zheng, Jun Yang, Ming Wen, Hengcheng Zhu, Yepang Liu, and Hai

Jin. 2021. Why Do Developers Remove Lambda Expressions in Java?. In 36th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2021,
Melbourne, Australia, November 15-19, 2021. IEEE, 67–78.

[48] Cyrine Zid, Fiorella Zampetti, Giuliano Antoniol, and Massimiliano Di Penta.

2023. Replication package for the paper: "A Study on the Pythonic Functional
Constructs’ Understandability". https://doi.org/10.5281/zenodo.8191782

https://doi.org/10.5281/zenodo.8191782

	Abstract
	1 Introduction
	2 The Studied Functional Constructs
	3 Study Definition and Planning
	3.1 Context Selection - Study Participants
	3.2 Context Selection - Study Objects
	3.3 Dependent and independent variables
	3.4 Experiment Design and Planning
	3.5 Experiment Execution
	3.6 Results Collection and Processing
	3.7 Analysis Methodology

	4 Study Results
	4.1 Participants' Demographics
	4.2 RQ1: How difficult is it to modify code snippets relying on functional constructs compared to their procedural alternatives?
	4.3 RQ2: To what extent do functional constructs influence the perceived source code understandability?
	4.4 RQ3: Why do developers use functional constructs, and in which scenarios?

	5 Implications
	6 Threats to Validity
	7 Related Work
	7.1 Functional programming and ``Pythonic'' constructs
	7.2 Code comprehension studies with humans

	8 Conclusion and Future Work
	9 Data Availability
	References

