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Abstract Software ecosystems consist of multiple software projects, often in-
terrelated by means of dependency relations. When one project undergoes
changes, other projects may decide to upgrade their dependency. For exam-
ple, a project could use a new version of a component from another project
because the latter has been enhanced or subject to some bug-fixing activities.
In this paper we study the evolution of dependencies between projects in the
Java subset of the Apache ecosystem, consisting of 147 projects, for a period
of 14 years, resulting in 1,964 releases. Specifically, we investigate (i) how de-
pendencies between projects evolve over time when the ecosystem grows, (ii)
what are the product and process factors that can likely trigger dependency
upgrades, (iii) how developers discuss the needs and risks of such upgrades,
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and (iv) what is the likely impact of upgrades on client projects. The study
results—qualitatively confirmed by observations made by analyzing the devel-
opers’ discussion—indicate that when a new release of a project is issued, it
triggers an upgrade when the new release includes major changes (e.g., new
features/services) as well as large amount of bug fixes. Instead, developers are
reluctant to perform an upgrade when some APIs are removed. The impact
of upgrades is generally low, unless it is related to frameworks/libraries used
in crosscutting concerns. Results of this study can support the understanding
of the of library/component upgrade phenomenon, and provide the basis for
a new family of recommenders aimed at supporting developers in the com-
plex (and risky) activity of managing library/component upgrade within their
software projects.

Keywords Software Ecosystems · Project dependency upgrades · Mining
software repositories

1 Introduction

Software development is a collaboration-based activity. The highest grade of
such a collaboration can perhaps be achieved when a software company decides
to make available their product line architecture and shared components to
external parties. Making available their own product outside the organizational
boundary generates the so-called software ecosystems [6,26]. In other words, a
software ecosystem is a group of software projects that are developed and co-
evolve in the same environment. These projects share source code, depend on
one another, and can be built on similar technologies. In some cases, they have
a closed core that provides the basic functionality, and a set of components
that provide specific functionality. For example, the Eclipse project provides
the core functionality of an IDE, that can be customized into any kind of IDE
or editor though a specific plug-in. In other cases, they can be completely
di↵erent projects sharing a set of common components.

Software ecosystems are therefore a new dimension of collaboration, that
allows companies to satisfy the need of their customers as rapidly as possible
and facilitate mass customization [6]. Thus, in recent years it is possible to ob-
serve an increasing trend of software companies that are moving from product
lines towards software ecosystems to better support the intra-organizational
reuse of software. Such a transition recalls the need of methods and tools to
e↵ectively manage both the coordination and the evolution of software ecosys-
tems.

A crucial activity for an e↵ective evolution of a software ecosystem is
managing the upgrades of libraries/components. When one project undergoes
changes and issues a new release, this may or may not lead other projects
to upgrade their dependencies. On the one hand, using up-to-date releases
of libraries/components may result useful, because these releases can contain
new and useful features, and/or possibly some faults may have been fixed.
On the other hand, the upgrade of a component may create a series of issues.
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For example, some APIs may have changed their interface, or might even be
deprecated [37], which requires the adaptation of its client.

In addition, let us suppose a program uses multiple libraries, namely lib1
and lib2, and lib1 depends on lib2. It can happen that if one upgrades lib2, then
lib1 no longer works because does not support the new release of lib2. Last, but
not least, a library/component might have changed its license making it legally
incompatible with the program using it [12]. All these scenarios suggest that
updating a library/component in large ecosystems is a complex and daunting
task, which requires to ponder several factors.

In principle, the problem can be dealt with update management tools avail-
able in many operating systems—e.g., Windows, Linux, MacOS—however such
update tools either work with entire applications or with operating system re-
lated upgrades. Also, they are not able to decide when performing the upgrade
and when it might be avoided or postponed.

Following the recent trend of studies aimed at analyzing the evolution of
software ecosystems [7,15,37], we present an exploratory study conducted on
the Java subset of the Apache ecosystem focusing the attention on how and
why dependencies (i.e., dependencies related to API usage and/or framework
usage through extension) between software projects evolve. The entire Apache
ecosystem is composed of 195 software projects developed by using a total of
29 programming languages. We analyzed the change history of the 147 Java
software systems, in the period of time going from June 1999 to April 2013
resulting in 1,964 releases.

In our study we analyzed how the number of projects, their size, the de-
pendencies among them, the declared software licenses, and the number of ac-
tive developers changed in the ecosystem during time. After this preliminary
analysis, we tried to analyze which are the factors driving a project (“client
project”) to upgrade (or not) a dependency with another project (“library
project”) when a new release of the latter is issued. Several factors could in-
fluence such a choice. We focus our attention on (i) project size; (ii) structural
changes (e.g., changes involving the interfaces) and number of bug fixed in the
new release of the library project; (iii) nature of the release (i.e., minor, ma-
jor, or bug fixing); (iv) licensing changes; and (v) developers’ overlap between
the client project and the libraries being used by such a project. It is worth
noting that some of these factors cannot be directly observed from source code
changes only, but they require the analysis of other source of information, such
as release notes, or developers’ discussion. For this reason, after performing
a quantitative analysis of the phenomenon of library/component upgrade, we
analyzed mailing lists and issue tracking systems in order to understand to
what extent developers discuss the management of dependencies and what are
the factors subject of the discussion. Such an investigation required the man-
ual analysis of 7,685 discussions and allowed us to provide some qualitative
insights on the evolution of dependencies in the Apache ecosystem. Finally,
we also investigated the impact of upgrades on the source code of the client
project.
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The obtained results indicate that when client projects upgrade their de-
pendencies, they do not necessarily perform all available upgrades. Specifically,
a client project tends to upgrade a dependency only when substantial changes
in the library project are released, including bug-fixing activities. These ob-
servations are also confirmed by the analysis of communications between de-
velopers. In addition, we observed that pairs of projects having a dependency
share a higher number of developers as compared to pairs of projects do not
having a dependency. However, such an overlap does not influence the client’s
upgrade frequency. Finally, our results indicate that while the proportion of
source code of client projects impacted by changes in the projects they depend
on is, on average, quite limited (5%), there are specific dependencies, generally
toward frameworks/libraries o↵ering very wide services (e.g., parallel compu-
tation), that could strongly impact (up to 62%) the client project source code
when a dependency is upgraded.

The study reported in this paper provides, for the first time, insights on the
complex and crucial activity of library/component upgrade in large software
ecosystems. Specifically, the study results provide evidence about the relevance
of the problem, and that specialized methods and tools might be high benefi-
cial for developers that have to decide whether or not upgrade a dependency
based on the benefits and the side e↵ects of such an upgrade. Thus, the study
presented in this paper poses the basis for a new category of recommender
systems, that could be used in software ecosystems to e↵ectively manage the
dependencies between projects.

The paper is organized as follows. Section 2 describes the study definition
and planning, while results are reported in Section 3. Section 4 discusses the
threats that could a↵ect the validity of the results achieved. Section 5 presents
the existing literature about the evolution of software ecosystems and evolu-
tion/adaptation of APIs. Finally, Section 6 concludes the paper and outlines
directions for future work.

2 Study Definition and Planning

The goal of this study is to analyze how project inter-dependencies are up-
graded in a software ecosystem, with the purpose of understanding (i) how
dependencies are maintained, and (ii) the likely reasons and consequences of
upgrades. The quality focus is software maintainability, which could be im-
proved by understanding the phenomenon of library/component upgrade. The
perspective is of researchers interested in understanding when and why devel-
opers upgrade dependencies in software ecosystems.

The context of the study consists of the entire history of the Java sub-
set of the Apache ecosystem, that represents the vast majority of it (75% of
the projects). To date, the entire Apache ecosystem is composed of 195 soft-
ware projects spread over 23 di↵erent categories (e.g., big-data, FTP, mobile,
library, testing, XML) and developed by using a total of 29 programming lan-
guages. We analyzed the change history of the 147 Java software systems, in
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the period of time going from June 1999 to April 2013 resulting in 1,964 re-
leases. The size of the ecosystem in the analyzed period of time ranges from
32 up to 28,584 KLOCs, while the number of classes (methods) ranges from
113 to 114,000 (1,386 to 780,731). For sake of clarity, in the following we re-
fer to the project having a dependency toward another project as the “client
project” and to the project used by a “client project” as the “library project”.

2.1 Research Questions

The study aims at providing answers for the following four research questions:

– RQ1: How does the Apache ecosystem evolve? This research question is
preliminary to the other three, and aims at providing a context for our
study. Specifically, we analyze how the number of projects, their size, the
dependencies among them, the declared software licenses, and the number
of active developers changed in the Apache ecosystem during time. Such
information represents the foundation for the other research questions.

– RQ2:What are the reasons driving a client project to upgrade a dependency

toward a new available release of a project it depends on in the Apache

ecosystem? Our conjecture is that the client project does not always up-
grade a library when a new release of such a library has been issued but,
rather, this is done based on the benefits the upgrade would provide, and
the impact such an upgrade can have on the system. Other than verifying
this conjecture, we are also interested to understand what are the factors
driving a client project to upgrade (or not) a library. Clearly, such upgrades
can be driven by many di↵erent factors, some of which cannot be directly
observed from software repositories. In our study, we choose to focus on
the following factors:
– Project characteristics: we analyze if certain characteristics of the clients’

projects, namely the project size (in terms of # of classes and LOC) and
the number of dependencies the project has towards other projects, im-
pact their proneness to upgrade their dependencies when new releases
of the libraries are available. Our conjecture is that larger systems as
well as those having several dependencies, could adopt a more system-
atic approach in managing their dependencies as compared to small
projects almost “living” on their own.

– Structural changes, captured by analyzing changes in source code of
the library project. The conjecture is that changes involving the library
interfaces will likely trigger more upgrades than other changes.

– Number of bugs fixed: we compute the number of bugs fixed between
the previous library release and the current one, to determine whether
a higher number of fixed bugs correlates with the likelihood of release
upgrade. We focus on such factor since we expect that releases including
a high number of fixed bugs triggers more upgrades with respect to
releases including few or no fixes.
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– Nature of the release, captured by manually analyzing release notes. We
are interested to investigate whether the release was due to a substantial
addition of new features or if, instead, it was mainly due to bug fixes or
else to minor improvements. We expect to observe a positive correlation
between the number of new features present in a release and the number
of upgrades it triggers. Indeed, a release including several new features
is likely to be more attractive for client projects.

– Licensing changes, occurring in the declared licenses, that might result
in legal incompatibilities between the client and the library project. A
licensing change could discourage client projects to upgrade toward a
new release of the library project in order to avoid license compliance
problems.

– Developers’ overlap between the client and the library project. The
conjecture here is that projects with a non-negligible overlap of devel-
opers with the used library will perform updates more frequently than
projects having a smaller (or no) overlap.

– RQ3: How are dependencies discussed between open source developers?

This research question aims at understanding to what extent is the man-
agement of dependencies between a client and a library discussed by de-
velopers over mailing lists and issue trackers, analyzing the factors object
of the discussion and the developers involved.

– RQ4: If a dependency is upgraded, to what extent would this impact on the

client project source code? This research question aims at quantitatively
investigating the impact on the source code of the client project when it
upgrades a project it uses towards a new available release.

2.2 Data Extraction and Analysis

To answer our research questions we use a crawler and a code analyzer devel-
oped in the context of the MARKOS European project1 The crawler is able
to identify for a given project of interest the list of available releases with
their release date as well as its SVN address. This information is extracted
by crawling DOAP (Description Of A Project) files available on the Internet2.
Each DOAP file provides information about a specific open source project and
it is released by the project itself. Thus, the information contained in DOAP
files are quite reliable and include (but are not limited to): the project name,
a brief and a long project description, the versioning system address, and a
list of the public releases issued by the project.

Using the information extracted by the crawler, the code analyzer checks-
out files from the SVN repository and identifies the folder containing each of
the project releases identified by the crawler. This is done by exploiting the
SVN tag mechanism. In other words, the versioning system of Apache projects

1 http://www.markosproject.eu [5] in order to download the source code of the 1,964
software releases considered in our study.

2 http://projects.apache.org/doap.html
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has a separate directory for each release (where files belonging to such a release
are stored), besides keeping the project history in the SVN main trunk. In case
the code analyzer does not identify any folder containing a particular release, it
reports the problem. This issue occurred for 278 releases (across all projects).
In order to consider also these releases in our study, we manually downloaded
them from the Apache release archives, available online for each project3.

Once downloaded all the software releases, we extract dependencies exist-
ing between such releases. Note that in this study we focus on dependencies
existing between Java Apache projects, ignoring those toward projects exter-
nal to the Apache ecosystem or not written in Java. Also in this case, the
MARKOS code analyzer has been used. The identification of the inter-project
dependencies is performed in di↵erent steps. Given a set of software releases,
the code analyzer searches—in each folder release—for files that explicitly
report inter-project dependencies. By looking into the Apache repositories,
we found these files to generally be of three types: libraries.properties,
deps.properties, or the Maven pom.xml files. Indeed, 1,231 of the 1,964 re-
leases object of our study (63%) contain at least one of these three files in
their root folder. Note that the dependency information reported in these files
is generally detailed (i.e., both the name of the project as well as the used
release are reported) and reliable.

When the code analyzer is not able to find any of these files (in 37% of the
releases), it searches for all jar files contained in the release folder and tries
to match each of those files with one of the other software releases provided.
This is done by computing the Levenshtein distance [32] between the name
of the jar archive and the name of each provided release. The output of the
code analyzer is a list of candidate dependencies between the set of provided
software releases.

In our study, we assume that the dependencies extracted by parsing the
files libraries.properties, deps.properties, and pom.xml are correct. In-
stead, when the dependencies are extracted by analyzing jar files in the release
folder, we manually validate and classify them as true dependencies or as false
positives. This operation was done by two of the authors that analyzed a total
of 3,742 dependencies, classifying 832 correct dependencies. Overall, the final
number of dependencies found in the analyzed 14 years of observation and
considered in our study is 3,514 (i.e., 2,682 extracted from dependencies files,
plus the 832 manually verified).

To answer RQ1 and RQ2 we also identify the software licenses declared in
the downloaded software releases. To this aim we use Ninka4 [18], a lightweight
license identification tool for source code that consists on a sentence-based
matching algorithm that automatically identifies license from license state-

ments. We run Ninka on each file contained in the 1,964 software releases

3 An example of archive for the Ant project can be found here http://archive.apache.
org/dist/ant/source

4 http://ninka.turingmachine.org/
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considered in our study, obtaining as output the license type and version de-
clared in its licensing statement (if present).

After having performed this first data analysis (necessary for all research
questions), we perform analyses specific to each research question, explained
in the following.

2.2.1 RQ1 analyses

To answer RQ1 we analyze the history of the Apache ecosystem, considering
snapshots captured every month. In particular, starting from June 1999, we
compute, with a granularity of one month (which we consider su�cient to
observe the evolution of the ecosystem over several years):

1. the number of existing projects;
2. the size of the ecosystem in terms of KLOCs;
3. the dependencies existing between projects; and
4. the software licenses declared in source files.

To analyze how the number of developers changed during time (RQ1),
we extract the list of active developers that worked in the ecosystem during
its entire history5. In particular, from our starting date (i.e., June 1999), we
compute the number of active developers at time intervals of six months (e.g.,
from June 1999 to January 2000). We consider a developer active in the time
interval of interest if she performed at least one commit in one of the Apache
projects existing at date. Note that, while we consider a granularity of one
month for most of the measures, we check the activity of developers for a
period of six months, because the lack of activity for a short period (i.e.,
one month) can just occur by chance. Indeed, developers engaged in open
source development are often volunteers just dedicating part of their free time
to development activities. Also, checking whether a developer is active in a
given time period does not mean determining whether a developer has left
a project or not. In other words, a developer may not be active in a given
time period, but she can still be part of the project and likely contribute in
the future. On the other side, computing the other measures (i.e., number
of projects, KLOC of the ecosystem, number of existing dependencies, and
declared software licenses) at time intervals of one month is safe (i.e., there is
no possible misinterpretation behind these measures) and will provide us with
a finer-grained view of the evolution of the Apache ecosystem.

2.2.2 RQ2 analyses

Some of the data needed to answer RQ2 (e.g., dependencies, licenses, develop-
ers working on the various projects) is already available after having performed
the general data extraction and the RQ1-related data extraction as described

5 Note that we limit our analysis to developers we can detect through their activities in
the versioning system, as also pointed out in Section 4.
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Fig. 1: Process used to divide upgraded and not upgraded releases.

above. Specifically, we describe how we measure the dependent and indepen-
dent variables that concern the analyses of RQ2, and explain the kinds of
statistical analyses we perform.

Dependent Variable: Upgrades. Given the dependencies existing between
di↵erent project releases, we distinguish releases of the libraries that are up-
graded by client projects (hereby referred as upgraded releases) and releases
ignored by client projects (hereby referred as not upgraded releases).

To create the two sets of releases (i.e., upgraded releases and not upgraded

releases) we adopt the process depicted in Fig. 1. For each pair of Apache
projects, Pi and Pj , having at least one dependency between their releases,
when Pi upgrades the dependency towards Pj , we determine whether Pi up-
grades the dependency toward to the last existing release of Pj or to another
release. In the former case, we put the upgraded Pj release in the set upgraded
releases. Instead, when the upgrade was not toward the last available release
we still put the upgraded Pj release in the set upgraded releases, however we
also put the newer ignored releases of Pj in not upgraded releases.

To better understand how we compute such sets, Fig. 1 shows three di↵er-
ent evolution scenarios of dependencies between two projects Pi and Pj . Let us
assume that the release r1 of Pi depends on the release r1 of Pj . Then, a new
version of project Pi is released (r2). In the first scenario, when r2 for Pi is
released, its dependency is upgraded to r3 of Pj , the last available Pj release.
In this case, r3 is included in the set upgraded releases, while no releases are
added to the set not upgraded releases, since Pi correctly upgraded its depen-
dency to the last available Pj release. In the second scenario (reported in the
middle of Fig. 1), the release r2 of Pi upgrades its dependency to the release
r2 of Pj , even if a newer release (i.e., r3) is available. In this case the release
r3 of Pj has been “ignored” by Pi and thus, it is added to the set not upgraded
releases, while release r2 of Pj is added to the set upgraded releases. In the
third and last case, Pi does not upgrade at all the dependencies toward Pj ,
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i.e., the new release of Pi continues to use the release r1 of Pj , despite the
availability of more recent releases (i.e., r2 and r3). In this case, r2 and r3 are
added to the set not upgraded releases, while no releases are added to the set
upgraded releases.

Note that, if a release ri of a project Pj belongs to the set of upgraded
releases when analyzing dependencies between Pi and Pj , and the same re-
lease belongs to the set of not upgraded releases when analyzing dependencies
between a project Ps and Pj , the release ri is removed from both sets, and
not considered any longer in the comparison between upgraded releases and
not upgraded releases. This is done (i) to avoid overlap between the two sets
(which would make the comparison unfair); and (ii) to strongly isolate only
releases that are generally upgraded (and not) by client projects. As it will
be clearer later on, 140 releases were classified as upgraded or as not upgraded
and of these, 14 have not been assigned to one of the two sets since upgraded
by some client projects and not upgraded by other clients. Thus, only 10%
of upgraded/not upgraded releases were discarded from our analysis, limiting
the impact on results of our choice of excluding each possible overlap between
the two sets (i.e., upgraded vs not upgraded).

Independent Variable - Project characteristics. To verify if project
characteristics impact the upgrade frequency of client projects, we extract
the following information from each client:

1. size, in terms of Lines Of Code (LOC), Number of classes (classes);
2. fan-out, i.e., the number of dependencies it has toward other projects; and
3. fan-in, i.e., the number of projects using it. Note that a client project can

be a library for other projects.

The update frequency (Upf ) of a client project C issuing its release ri is
computed as:

Upf (Cri) =
#upgraded dependencies

#available upgrades
%

where #upgraded dependencies is the number of dependencies upgraded in
ri and #available upgrades is the total number of upgrades available for C
when ri is released.

Then, we compute the Spearman rank correlation [45] between the mea-
sured system characteristics and the upgrade frequency of client projects. Co-
hen et al. [8] provided a set of guidelines for the interpretation of the correlation
coe�cient. It is assumed that there is no correlation when 0  ⇢ < 0.1, small
correlation when 0.1  ⇢ < 0.3, medium correlation when 0.3  ⇢ < 0.5, and
strong correlation when 0.5  ⇢  1. Similar intervals also apply for negative
correlations.
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Independent Variable - Structural changes. Concerning the changes
performed among two subsequent releases of each project, the MARKOS code
analyzer parses the source code by relying on the srcML toolkit [9] and ex-
tracts a set of facts concerning the files that have been added, removed, and
changed in each commit. Information about the commits performed between
release ri�1 and ri is extracted from the versioning system. Given the set of
files involved in a commit, the following kinds of changes are identified:

– File addition and removal. These changes can be easily identified from the
versioning system log.

– Class addition and removal. Added and removed classes are extracted by
comparing the content of each source code file involved in the commit
before and after the commit was performed. Note that for this purpose it
is not enough to analyze just the files added and removed in a commit,
since a new class could be added or removed from a previously existing
source code file (i.e., a file modified in the commit). Also, it could happen
that a class is deleted from a file Fi and is added in a file Fj (i.e., the class
has been moved from file Fi to file Fj), or that a class has been renamed. To
detect these cases, renaming or moving of classes between files are identified
through a fingerprinting-based approach. That is, a class is characterized
by a set of metrics (forming a fingerprint), and such a fingerprint is used to
trace classes in case of renaming or moving. We evaluated this fingerprint-
based approach in the context of the MARKOS European project on a
set of 200 renamed/moved classes (of which 100 renamed and 100 moved)
obtaining an accuracy of 93% (i.e., 186 of the renamed/moved classes where
identified by the code analyzer, which classified the remaining 14 as newly
added classes).

– Method addition and removal. As in the previous case, added and removed
methods are identified by comparing the content of each source code file
before and after the commit under analysis. Moving or renaming methods
is detected similarly to class renaming/moving (i.e., using a fingerprinting-
based approach).

– Method changes. For each method contained in the files modified in the
commit under analysis, our tool compares its version before and after the
commit. Through this comparison, it is able to identify: (i) changes to
the method visibility (e.g., a method converted from public to private); (ii)
changes to the method signature (e.g., parameters added/removed, changes
to the exceptions thrown by the method); and (iii) changes performed to
the method body. Note that we can distinguish between changes performed
to public and non public methods.

Independent Variable - Number of fixed bugs. We identify the bugs
fixed in each software release by mining the bug-tracking systems of the var-
ious projects, extracting only the bugs fixed in each specific release. In par-
ticular, when identifying bugs fixed on release ri, we search into the issue
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Table 1: Tags assigned to classify the release notes.

Tag Applied when Constraints
minor The new release only includes improvements of existing features [if !major ]
major The new release includes new features [if !minor ]
bug fixing The new release includes fixed bugs -

tracker for issues with Type=“Bug” (Jira) or Severity=“Defect” (Bugzilla),
Status=“Resolved” or “Closed”, and Resolution=“Fixed”, with a resolution
date included in the [tri�1 , tri ] period, where tri is the release date of ri.

Besides comparing descriptive statistics, we also use the Mann-Whitney
test [10] to compare the distribution of changes and bug-fixing for the above
described two sets of releases (information extracted through the process de-
scribed in Section 2.2). We assume a significance level of ↵ = 5%. We also
estimate the magnitude of the di↵erence between the number of changes for
the two considered groups of releases (upgraded and not upgraded by clients)
using the Cli↵’s Delta (or d), a non-parametric e↵ect size measure [23] for
ordinal data. We follow the guidelines of Cli↵ [23] to interpret the e↵ect size
values: small for 0.148  d < 0.33 (positive as well as negative values), medium
for 0.33  d < 0.474 and large for d � 0.474.

Independent Variable - Nature of the release. We manually analyze the
release notes, and classify them using the tags reported in Table 1. In partic-
ular, Table 1 shows for each tag its name (e.g., major), explaining when it
has been applied (e.g., the new release includes new features), and exclusion
constraints between di↵erent tags (e.g., the tag major excludes the tag mi-

nor). Note that the tag bug fixing is orthogonal to minor/major, and can be
assigned to any release note talking about fixed bugs, despite it underwent mi-
nor or major changes (this is why it does not have constraints in Table 1). This
classification has been performed by two of the authors who individually ana-
lyzed and tagged the release notes. Then, they performed an open discussion
to resolve any conflicts and reach a consensus on the assigned tags. Descriptive
statistics of the tags assigned to the release notes are discussed in the paper.
Note that such variable is not independent from the number of fixed bugs as
well as from structural changes. Indeed, we found major releases to contain a
higher number of fixed bugs and, in general, of changes, as compared to minor

releases. For instance, the median number of bugs fixed in major releases is
35 as compared to the 15 fixed in minor releases.

Independent Variable - Licensing changes. We perform this analysis us-
ing data extracted as explained in RQ1. We determine if upgrades or, possibly,
replacements of a library with another, occur when the library or the client
change the license in a way to create an incompatibility.
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Table 2: Tags assigned to classify the mailing lists discussions.

Tag Applied when Constraints
GENERAL TAGS

client The discussion is in the client mailing list [if !library]
library The discussion is in the library mailing list [if !client ]

dependency
The discussion focuses on the dependency be-
tween the client and the library

-

DEVELOPERS TAGS
only developers
client

only developers of the client project take part
to the discussion

[if dependency && !only developers li-
brary && !both developers]

only developers
library

only developers of the library project take part
to the discussion

[if dependency && !only developers
client && !both developers]

both developers
both developers of the client and of the library
projects take part to the discussion

[if dependency && !only developers li-
brary && !only developers client ]

TOPIC TAGS

break
the discussion is about avoiding changes that
could break the dependency

[if dependency && !fix && !upgrade
&& !use && !other ]

fix
the discussion is about changes needed to fix a
dependency

[if dependency && !break && !upgrade
&& !use && !other ]

upgrade
the discussion is focused on whether upgrad-
ing/not upgrading a dependencies toward a
new available release of the library project

[if dependency && client && !fix &&
!break && !use && !other ]

use
the discussion is about how to use the library
project

[if dependency && client && !fix &&
!upgrade && !break && !other ]

other
the discussion is about the dependency, but
cannot be classified with any of the previous
tags

[if dependency && !break && !fix &&
!upgrade && !use]

Independent Variable - Developers’ overlap. We analyze the overlap in
terms of active developers (already detected to answer RQ1) between all pairs
of projects existing in the Apache ecosystem. Given two projects C and L, the
developers’ overlap (in percentage) between them is computed as:

overlapC,L :
|DC \DL|
|DC [DL|

where TC are the developers of project C and TL are the developers of project
L. With this analysis we want to understand if (i) pairs of projects having a
dependency share more/less developers than pairs of projects do not having a
dependency and (ii) client projects having a high overlap of developers with the
libraries they use have a higher upgrade frequency (still by using the Spearman
correlation).

2.2.3 RQ3 analyses

Concerning RQ3, we downloaded 6 the Apache mailing lists and the discus-
sions on the Apache issue trackers for the projects object of our study showing
at least a dependency. This resulted in the download of 84 mailing lists and
nine issue trackers. Note that the number of issue trackers downloaded is con-
siderably lower than the number of mailing lists, due to the fact that most
of the Apache projects use Jira7 as issue tracker, which automatically for-
wards discussions to the projects’ mailing list. Therefore, in such cases it was

6 http://mail-archives.apache.org/mod_mbox/
7 https://issues.apache.org/jira/secure/Dashboard.jspa
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su�cient to limit our analyses to mailing list only. Instead, this is not the
case for projects using Bugzilla8. Overall, we downloaded 664,490 discussions
containing a total of 1,924,002 messages.

Then, for each pair of projects C, L exhibiting a dependency, we filter—
from the project C mailing lists and issue tracker—all discussions containing
(in the mail object/issue title or in the mail body/issue description) the name
of project L. Similarly, we filter—from the project L mailing lists and issue
tracker—all discussions containing (in the mail object/issue title or in the
mail body/issue description) the name of project C. This resulted in 7,685
discussions that have been manually analyzed by two of the authors, and
classified using the tags shown in Table 2.

The manual analysis has been performed as follows. Firstly, general tags
are assigned to the discussion, classifying it as belonging to the client or to the
library mailing list/issue tracker and, most importantly, verifying if the dis-
cussion is focused on the management of the dependency between the client
and the library project (tag dependency in Table 2). Then, if the tag depen-

dency has been assigned to the discussion, developers and topic tags are also
associated to it. Developer tags aim at classifying the developers taking part
to the discussion, while topic tags categorize the aim of the discussion (see
Table 2). Developer tags have been automatically assigned by matching the
email addresses used in the mailing lists/issue trackers with those used in the
versioning systems of the project under study. We report descriptive statistics
of the tags assigned to the analyzed discussions, and then discuss the most
interesting cases. Note that results of the manual analysis performed in the
context of this research question can also help in corroborating quantitative
findings from RQ2.

2.2.4 RQ4 analyses

To answer RQ4, we identify—using again the MARKOS code analyzer—the
source code potentially impacted when an upgrade of a dependency is per-
formed by a client project. The impacted source code is overestimated con-
sidering as candidate impact set all the classes of the client project importing
at least one class of the upgraded project. We report descriptive statistics
of the impacted client code in terms of percentage of impacted classes, and
percentage of impacted LOCs.

2.3 Replication package

The study described in this section can be replicated using the replication
package available online9. The replication package provides information to
download all analyzed projects, and includes data sets used to answer the
study research questions. In particular, we provide:

8 http://www.bugzilla.org/
9 http://distat.unimol.it/reports/emse-apache/
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Fig. 2: Evolution of the size in the Apache ecosystem.

– raw data of the evolution during time of number of projects, dependencies
between them, size, and number of developers of the Apache ecosystem;

– the history of dependencies between project releases,
– the changes captured through the MARKOS code analyzer for upgraded

and not upgraded releases, and
– raw data of the manual tagging performed on the developers’ discussions.

3 Analysis of the Results

This section discusses the study results, in order to answer the four research
questions formulated in Section 2.1.

3.1 RQ1: How does the Apache ecosystem evolve?

Fig. 2, 3, and 4 report the evolution over time of the Java Apache ecosystem,
in terms of size measured in KLOCs (see Fig. 2), number of projects (black
line in Fig. 3), number of dependencies existing between them (gray line in
Fig. 3), and number of active developers10 (Fig. 4).

The results of model fitting suggest the exponential growth (adjusted R2 =
0.56) of the Apache ecosystem during the analyzed 14 years (Fig. 2). From
the single Java project existing in 1999 (i.e., Apache ECS11) the Apache

10 Remember that we consider a developer “active” if she performed at least one commit
in the previous six months.
11 http://projects.apache.org/projects/ecs.html
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Fig. 4: Evolution of active developers in the Apache ecosystem.

ecosystem grows up to the 147 Java projects existing today. Such a growth is
linear (adjusted R2 = 0.98). With the number of projects also the size—see
Fig. 2—of the entire ecosystem grows, by reaching almost 30 Million LOCs in
April 2013. A very strong peak in the size of the ecosystem can be observed
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represent the 147 projects object of our study reported in alphabetic order.

between the end of 2006 and the begin of 2007, when the Apache ecosystem
doubled its size. In this period, several new, large project have been added to
the ecosystem. Examples include Apache UIMA12 with its two millions of
LOCs and Apache Derby13 with almost one million LOCs.

Fig. 4 shows that the number of active developers grows exponentially
(adjusted R2 = 0.82) until January 2006 together with the increase of the
number of projects (Fig. 3) in the Apache ecosystem. In particular, in 2006
there were 58 Java projects carried out by almost 1,800 developers. Then,
while the number of projects continued its linearly growth (see Fig. 3), the
number active developers stopped its growth, and remained almost stable for
four years at a level of 1,800 people. Then, from 2011 beyond we observed a
decrease of the number of active developers. At the time of writing (November
2013) such a number is of around 1,200 people.

Given the continuous increase of the number of projects in the ecosystem,
this result might appear counterintuitive. We found two possible interpre-
tations for that. The first one is related to the developers’ overlap existing
between the Apache projects. As previously mentioned, the developers base in

12 http://uima.apache.org/
13 http://db.apache.org/derby/
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2006 was very large (1,800 people), therefore when new projects were added
to the ecosystem, it is likely that they were mostly carried out by developers
already active on other (previously existing) projects. A relevant example is
represented by the Apache commons projects, that are evolved and main-
tained by a very cohesive community of developers. The number of distinct
developers working in 2013 on the Apache ecosystem is 147, against 2,674 de-
velopers counted by project (i.e., a developer is counted multiple times if she
works on more than one project). This means that there is a strong overlap of
developers between these projects. Thus, when new projects are added to the
ecosystem, this does not necessarily imply that new developers also join the
ecosystem.

To get a better view of the developers’ overlap existing between the Apache
projects, Fig. 5 shows, for each pair of the analyzed 147 Java projects, the
percentage of developers overlap in 2013: black means 100% of overlap between
the two projects, white means 0% of overlap. The diagonal is colored in black
by default, since each project will have 100% of developers’ overlap with itself.
As we can see, several projects share developers, also in high percentage. The
black rectangle that can be observed in the right-up part of Fig. 5 corresponds
to the Apache commons projects.

While the overlap figure explains the stable number of developers between
2006 and 2011, it is still unclear why from 2001 to 2013 the developers base
decreases, despite the increase of projects in the ecosystem. As it can be no-
ticed from Fig. 3, on the one hand the number of projects does not have
a substantial increase between 2011 and 2013 (12 projects added). On the
other hand, in such a period the overall ecosystem LOC (Fig. 2) increased
of about 18%. That is, changes occurred in the ecosystem mainly concerned
addition/improvement of features in existing projects (as well as bug fixes).
However, this kind of activity concerned a relatively limited number of de-
velopers, whereas many developers worked on the early development activity
of each project. Also, until 2011, several projects have reached a very stable
state, in which there is not a lot of activity. Therefore, we see a decrease in the
number of active developers (which does not necessarily mean that developers
abandon the project). For example, the last release of Apache Chainsaw14

is dated March 2006, while the last release of Apache Commons Betwixt15

is dated March 2008. Referring to the previous examples, the number of devel-
opers in Apache Chainsaw has decreased from eight in 2004 to one in 2013,
while the number of developers in Apache Commons Betwixt from 19 to
five in the same time period. Besides that, we noticed that also very active
projects—i.e., still issuing releases during the last year—had a decrease of ac-
tive developers due the reached mature state. For instance, in 2005 Apache
Cocoon16 had 64 active developers; nowadays the number of active devel-
opers is reduced to seven. Finally, it is worth noting that Goeminne et al.

14 http://logging.apache.org/chainsaw/
15 http://commons.apache.org/proper/commons-betwixt/
16 http://cocoon.apache.org/
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Table 3: Top Ten Most Used Libraries in the Apache Ecosystem in 2013

Projects List Nr. Times used Library
1. Apachelog4j 43
2. ApacheAnt 38
3. Apache Commons Compress 25
4. Apache Geronimo 18
5. Apache Commons Httpd Client 17
6. Apache Commons Jelly 16
7. Apache Commons Exec 16
8. Apache Commons VFS 16
9. Apache ORO 14
10. Apache Derby 14

[20] observed in the GNOME ecosystem a variation trend for the number of
active developers very similar to the one we found in the Apache ecosystem.
Specifically, after an initial increase of active developers from 1997 to 2003,
they found the developers base to be almost stable until the 2008. Then, they
observed a decrease of the active developers from 2008 until 2013.

Fig. 3 shows that the number of dependencies between projects contin-
uously increases during evolution. Similarly to the size, but di↵erently from
the number of projects, dependencies follow an exponential trend (adjusted
R2 = 0.56). In fact, until 2003 (when about 25 projects were in the ecosystem)
there were few dependencies between the projects. After 2003, dependencies
sensibly grow in the following years. This is mainly due to the fact that several
projects added after 2003 are projects implementing reusable components—
like those belonging to the Apache Commons17—that are used as libraries
by several Apache projects. For example, the number of client projects for
Apache Commons Compress18 grows up to 20 (April 2013). Table 3 reports
the ten most used libraries in the Apache ecosystem in 2013. As expected, all
of them belong to the Apache Commons project.

To provide a better view on how the Apache software projects and the
dependencies between them evolved during time, Fig. 6 shows snapshots of
the Apache ecosystem from 2002 to 2013. We ignored the years before 2002
since, as reported in Fig. 3, the number of projects (and dependencies) is
quite low. In the graphs of Fig. 6, each node represents a project, while an
edge connecting two nodes represents a dependency between two projects.
Also, the bottom part of Fig. 6 reports information useful to describe the
characteristics of the depicted graphs. In particular, we report for each graph:

– Descriptive statistics of the degree of the nodes present in it. The degree for
a node (project) Pi is the sum of its in-degree (i.e., the number of projects
using Pi as library) and out-degree ((i.e., the number of projects Pi uses
as library). Higher degree values indicate a higher number of projects’
dependencies in the Apache ecosystem.

17 http://commons.apache.org/
18 http://commons.apache.org/proper/commons-compress/
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Fig. 6: Snapshots of Projects and their Dependencies in the Apache Ecosystem
History.

– The mean shortest path. The average length of the shortest path existing
between all pairs of nodes (projects) in the graph. The addition of new
projects to the ecosystem would result in the increase of such number,
except if the added projects have a very high degree (i.e., they are easily
reachable from several other nodes). A low average value for the shortest
path is a characteristic of small-world networks19 [41].

– The number of hubs. The number of hubs present in the ecosystem. A hub is
a project having several dependencies (i.e., a high degree). A high number
of hubs is also a characteristic of small-world networks [41].

– The graph diameter. It represents the greatest distance between any pair
of nodes in the graph.

– The result (p-value) of the Kolmogorov-Smirnov test [24] performed on the

graph degree distribution. We verify if the degree distribution can be fit in a
power-law distribution, which is considered an indication that the network
is a small-world [41]. Having a power-law node degree distribution means
to have only a few nodes with a very high degree and a large number of
nodes with low degree. A p-value lower than 0.05 indicates that the degree
distribution is not a power-law distribution, while high p-values indicate a
good fitting to the power-law distribution.

By looking at Fig. 6 it is clear as the net of dependencies in the ecosystem
grows during evolution. The degree of the nodes also grows during time, going
from an average of 3.0 in 2002 up to an average of 4.8 in 2013. This indicates
an increase of the dependencies existing in the ecosystem. As a consequence

19 In a small-world network most of the nodes are not neighbors of one another but most
nodes can be reached from every other by passing a small number of edges [41].
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of the increasing number of projects (going from 24 in 2002 up to 147 in 2013)
the average length of the shortest path goes from 3.0 up to 6.6 while the
percentage of hub projects present in the graph almost remain constant—33%
in 2002 (8 over 24 projects) vs 30% in 2013 (44 over 147 projects). Finally, in
all snapshots the degree distribution of the corresponding graph fits a power-
law distribution (the minimum p-value is 0.67 in 2010) indicating that the
Apache projects and their dependencies result in a small-world network [41].

As explained in Section 2.2.2, we also analyzed the evolution of the software
licenses declared by the Apache projects during time. From 1999 until 2003
we found Apache Software License (ASL) v1.1 as the only license present in
all source code files of all the existing projects. Starting from 2004 all projects
started to migrate towards ASL v2.0 and, by the end of 2004, 86% of the
source code files in the Apache ecosystem already completed such a migration,
leaving the remaining 14% to v1.1. This migration was complete in 2008. In
addition to these two licenses, we just found one Apache project (i.e., Apache
Tapestry20) containing in the majority of its source code files a di↵erent
license, namely BSD 3. However, this does not create any legal issues for
potential client projects interested in using Apache Tapestry as a library.
In fact, the ASL is largely inspired to the BSD license and, contrarily to the
GPL one, source code files having a BSD license can be used by source code
files having an ASL. Given that the changes in terms of licenses observed
during the Apache ecosystem history cannot generate legal issues, in our RQ2

we will not analyze licenses as a possible factor motivating the upgrade of a
dependency for client projects.

Summary of RQ1. We can summarize results of RQ1 stating that the
Apache ecosystem size and dependencies exponentially increase over time. In-
stead, the number of active developers increased until a certain point (2006),
then it remained stable until 2011, since new projects were basically main-
tained by existing developers, and finally decreased because some projects
became stable and required less activity.

3.2 RQ2: What are the reasons driving a client project to upgrade a
dependency toward a new available release of a project it depends on in the
Apache ecosystem?

Concerning (RQ2), we first checked if not upgraded releases exist in the Apache
ecosystem history. Among the 1,964 releases considered in our study, 950 have
been involved in at least one dependency (as client or as library) during their
history. Of these 950, 140 releases belong to the 48 projects that have been used
as “library project”, i.e., have at least one client project using them. Thus,
these are the 140 releases that we classified as upgraded or as not upgraded by
client projects, following the process described in Section 2.2.2. It is worthwhile
to note that 14 of these releases have not been assigned to one of the two

20 http://tapestry.apache.org/
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Table 4: Spearman correlation between client characteristics and upgrade fre-
quency.

System characteristic ⇢ p-value
LOC 0.08 (none) <0.01
classes 0.09 (none) <0.01
fan-in 0.03 (none) <0.01
fan-out 0.13 (small) <0.01

sets, due to the fact that they are upgraded by some client projects and not
upgraded by other clients. Af for the other releases, 87 belong to the not

upgraded set, while 39 have been assigned to the upgraded set. This means
that 69% of new releases of Apache software projects are “ignored” by client
projects that depend on such projects.

In the following, we report and discuss results for each one of the indepen-
dent variables of RQ2 described in Section 2.2.2.

Project Characteristics. We checked whether specific project characteristics—
e.g., project size, number of dependencies, or fan-in and fan out—impact the
upgrade frequency of client projects, measured as explained in Section 2. Ta-
ble 4 reports the results of the Spearman correlation between LOC, classes,
fan-in, and fan-out of client projects and their upgrade frequency. The table
clearly shows that none of the considered properties has a strong correlation
with the library upgrade frequency.

We also checked whether client projects having a fan-out higher than one
(i.e., depending on more than one library) tend to upgrade their dependencies
all together or by selecting the libraries to upgrade/not upgrade. In particular,
given LC the set of libraries used by projects C, tCi the time when the ith C
release has been issued and Lti the subset of LC for which a new release is
available at time tCi , we verify which percentage of Lti is generally upgraded
by clients. Note that, since we are interested in understanding if client projects
upgrade their dependencies all together or not, we just focused our attention on
cases where at least one library has been upgraded. We found that, on average,
clients upgrade together 60% of the new available releases of dependencies they
depend on, ignoring a further 40% available for upgrades. This highlights a
selection made by the client projects on which libraries upgrade and which
libraries ignore, the main topic of our investigation in this research question.

Structural Changes. Fig. 7 reports the boxplots for di↵erent type of changes
for releases that are ignored by client projects (i.e., not upgraded releases), and
releases used by client projects to upgrade their dependencies (i.e., upgraded
releases). Moreover, Table 5 reports results of the Mann-Whitney test (p-
values, significant ones highlighted in bold face) and the Cli↵’s d e↵ect size
when comparing the distributions for the di↵erent types of changes performed
on upgraded and not upgraded releases. On average, in upgraded releases there
are 25 times more added classes than in not upgraded releases (125 vs 5)—see
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Fig. 7: Changes in upgraded and not upgraded releases.
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Table 5: Changes and fixed bugs in upgraded and not upgraded releases: Mann-
Whitney test (adj. p-value) and Cli↵’s (d).

Tested p-value Cli↵’s d
Added Classes < 0.0001 0.62 (Large)
Deleted Classes 0.51 0.05
Method Changes <0.0001 0.48 (Large)
PM Changes <0.0001 0.46 (Medium)
PM Added <0.0001 0.57 (Large)
PM Deleted 0.48 -0.01
Fixed Bugs <0.0001 -0.35 (Medium)

Fig. 7(a). As shown in Table 5, this di↵erence is statistically significant (p-
value <0.0001) with a large e↵ect size (0.62). Fig. 7 shows that, in general,
there are no deleted classes (with respect to the previous release) in both kinds
of releases—see Fig. 7(b)–and thus, no statistically significant di↵erence.

As for the changes applied to existing methods (i.e., methods already
present in a previous release of the project), we observed almost three times
more changes for the upgraded releases when analyzing all methods in the sys-
tem (705 vs 217)–see Fig. 7(c)—as well as when just focusing on public meth-
ods (that are those used by the client projects), 527 vs 160—see Fig. 7(d).
For both kinds of changes, results in Table 5 highlight statistically significant
di↵erences between upgraded and not upgraded releases, with a large e↵ect size
(0.48) when considering all methods, and a medium e↵ect size (0.46) when just
focusing on public methods. Also, the number of added public methods is larger
in the upgraded releases (six times larger) than in not upgraded releases—see
Fig. 7(e)—with statistical significance and a large e↵ect size (0.57).

All these results quantitatively highlight that upgraded releases contain
changes a↵ecting the interfaces and substantial changes, if compared to the
not upgraded releases. This is particularly evident when focusing on added
classes (29 times more) that are likely related to new features provided by the
new project release, and on added public methods (six times more than for not
upgraded releases), that represent new services available to the client projects.
Also, the higher number of overall method changes (three times more than
not upgraded releases) highlights substantial changes in the upgraded releases

if compared to the not upgraded releases. The only change for which we did not
observe a higher proportion in the upgraded releases are the deleted methods
(-63%)–see Fig. 7(f). Note that deleted public methods mean removed services
for the client projects. Thus, it is reasonable to think that client projects using
the removed services tend to not upgrade the dependency towards the new
release until they fix the client code in order to properly works with the new
release. This could explain the lower number of deleted methods for upgraded
releases, compared to not upgraded releases. However, this di↵erence is not
statistically significant (see Table 5).

Number of fixed bugs. Concerning the number of bugs fixed in upgraded

and not upgraded releases, Fig. 8 reports their distribution. On average, the
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Fig. 8: Fixed bugs in upgraded and not upgraded releases.

Table 6: Analysis of release notes for upgraded and not upgraded sets of re-
leases.

Release type Minor Major Bug fixing
not upgraded 79% 21% 82%
upgraded 59% 41% 92%

number of bugs fixed in the upgraded releases is more than two times greater
than for not upgraded releases (32 vs 15). Also, this di↵erence is statistically
significant with a medium e↵ect size (-0.35)—see Table 5.

Nature of the release. As explained in Section 2.2.2, to provide further evi-
dence to the results reported above, we inspected the release notes of both up-

graded releases and not upgraded releases to understand what are the changes
generally declared by developers when releasing both kinds of releases.

First, we found release notes of upgraded releases much longer than those
of not upgraded releases. For instance, Apache log4j release notes for the
six not upgraded releases considered in our study are composed, on average,
of 676 words each, against the 2,339 words of the five upgraded releases. The
same di↵erence can be observed between the release notes of the four Apache
Ant not upgraded releases having an average length of 1,417 words and those
of the eight upgraded releases with an average of 10,476 words. This suggests
that release notes for upgraded releases have a longer content, which often
means (as confirmed by a manual analysis) describing much more novelties,
improvements, and bug fixes. For example, Apache log4j releases from 1.2.5
to 1.2.8 (4 releases), plus 1.2.11 and 1.2.12 belong to the not upgraded releases

set. Their six release notes describe, in total, 29 bug fixes and one perfective
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maintenance activity, the latter being a di↵erent option to initialize the sys-
tem. Instead, release notes for the five upgraded releases (i.e., 1.2.9, 1.2.13,
1.2.14, 1.2.16, and 1.2.17) include 123 fixed bugs, two perfective maintenance
activities, and one new feature.

Among the six log4j not upgraded releases, five have been tagged as minor

(83%) while one (1.2.12) as major (17%). Also, all of them have been tagged
as bug fixing. Concerning the five upgraded releases, two (i.e., 1.2.9 and 1.2.13)
have been tagged as minor (40%), while three as major. Also in this case, all
5 releases have been also tagged as bug fixing.

The classification of the inspected release notes is reported in Table 6. As
we can see, 79% of not upgraded releases have been tagged as minor, against
59% of the upgraded releases, while 41% of upgraded releases have been tagged
as major, against 21% of the not upgraded releases. Concerning the bug-fixing
activities declared in release notes, overall 82% of the release notes for not

upgraded releases have been tagged as bug fixing, against 92% of the upgraded

releases. Note that finding some kind of reference to a performed bug-fix in
release notes is quite the norm. Thus, it is expected that the di↵erence in terms
of bug fixing between upgraded and not upgraded releases is not that high.
Despite this, the number of upgraded releases tagged as bug fixing is about
10% greater than the number of upgraded releases.

Overall, the inspection of the release notes confirms that client projects

tend to upgrade their dependencies when substantial changes in the projects

they depend on are released, including bug-fixing activities.

Licensing changes. Since we found in RQ1 that nearly all licensing changes
concerned two di↵erent versions of the ASF, this did not create any licensing
issue, and for such a reason it is no longer necessary to study the impact of
such a factor.

Developers’ overlap. Concerning the overlap of developers between projects,
we first investigated whether pairs of projects having a dependency share a
greater number of developers than projects do not having a dependency. Fig.
9 reports the distribution of developers’ overlap between projects having and
not having a dependency, showing that the former generally share a higher
number of developers as compared to the latter. This di↵erence is also statis-
tically significant: the Mann-Whitney test returned a p-value <0.01, with a
medium e↵ect size (Cli↵’s d=0.47).

After that, we checked whether among the pairs of projects having a depen-
dency, those sharing a higher number of developers with the library they use
also exhibit a higher upgrade frequency by the client (i.e., the client tends to
upgrade more frequently to new releases of the library projects). In particular,
we computed the Spearman correlation between the client upgrade frequency
and the average overlap of developers it has with its libraries. However, we
only observed a small correlation (⇢ =0.13, p-value<0.01).

Summary of RQ2:
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Fig. 9: Developers’ overlap (in percentage) in projects having and not having
a dependency.

1. Client projects’ characteristics do not influence their upgrade frequency.
The projects’ size (in terms of LOC and number of classes) and the number
of dependencies of the client projects (fan-in and fan-out) do not correlated
with the upgrade frequency.

2. Client projects tend to upgrade their dependencies when substantial changes

in the projects they depend on are released, including bug-fixing activities.
This result has been confirmed by both the quantitative and qualitative
analysis we performed.

3. Pairs of projects having a dependency share a greater number of developers

than pairs of projects not having a dependency. This result is a first indica-
tion that client and library projects co-operate in the management of the
dependency, that will be object of our RQ3.

4. When client projects upgrade their dependencies, they do not perform all

available upgrades. On average, client projects upgrade 60% of the new
available releases together, confirming the selection on the basis of the
criteria of point 2.
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Table 7: Tags manually assigned to the 871 discussions talking about depen-
dencies between projects.

Tag Number of discussions Percentage
GENERAL TAGS

client 759 87%
library 112 13%

DEVELOPERS TAGS
only developers client 725 83%
only developers library 107 12%
both developers 39 5%

TOPIC TAGS
break 24 3%
fix 283 33%
upgrade 187 22%
use 53 6%
other 324 36%

3.3 RQ3: How are dependencies discussed between open source developers?

Among the 7,685 discussions manually analyzed, 871 received the dependency

tag, indicating that the discussion was actually about the management of a
dependency between a client and a library project. Table 7 reports, for each of
the tags considered in our study, the number (and percentage) of discussions
to which it has been assigned.

Starting from the “general tags”, it is clear that most of the discussions on
dependencies’ management is carried out on the client projects’ side. In fact,
759 out of the 871 discussions (87%) were extracted from the clients mailing
lists and issue trackers. This is an expected result, since it is reasonable to
think that between client and library projects the former ones are those more
interested in the correct working of dependencies. This is also confirmed by
the “developers tags” showing as 83% of discussions related to dependencies
only involve developers from the client project. However, even if in a smaller
proportion (12%), also developers of the library projects discuss about de-
pendencies management, sometimes together with the developers of the client
projects (5%).

Concerning the topic object of the discussions (“topic tags” in Table 7),
we found 33% of them focused on fixing problems caused by a dependency
(tagged as fix ). Specifically, we observed discussions concerning di↵erent kinds
of problems. The most common problems observed are those related to bugs
present in the used library, consequently causing a bug in the client project.
For instance, such a kind of problem was discussed in the Apache Stanbol21

mailing list.Apache Stanbol is a software providing reusable components for
semantic content management (e.g., automatic tag extraction from webpages,
text completion in search fields, etc.), and it uses as library Apache Tika22,
a toolkit able to detect and extract metadata and structured text from various

21 http://stanbol.apache.org/
22 http://tika.apache.org/
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document formats. Developers of the client project discuss23 about problems
related to the extraction of metadata from JPEG images. This feature is pro-
vided to Stanbol by the Tika library.

Another discussion tagged as fix occurred in the Apache MINA24 mail-
ing list. MINA, a network application framework to develop high performance
and scalability networks, is used as library by the Apache SSHD25 project,
supporting SSH protocols for client-server communications. In this case26, de-
velopers are discussing about a problem found MINA 2.0.2, and causing a bug
in SSHD. The solution has been the simple upgrade to MINA 2.0.4, fixing the
reported issue. This example qualitatively supports one of our RQ2 findings:
client projects tend to upgrade their dependencies when bug-fixing activities

have been performed.
22% of the analyzed discussions was tagged as upgrade, indicating that

the discussion was focused on whether upgrading or not a dependency to-
wards a new available release of a library project. A very interesting exam-
ple is the one we found in the Apache Torque27 mailing list. Torque is
an object-relational mapper for java using several Apache projects as library
(i.e., commons beanutils, commons collections, commons configu-
ration, commons lang, xerces-j, XML commons, velocity, and ant).
Developer T.F. wrote in the discussion28:

I have gone through the libraries Torque depends on and seen if there

is a newer version available. Those are the updates I would suggest:

commons-beanutils from 1.6.1 to 1.7.0

commons-collections from 3.0 to 3.1

commons-configuration from 1.0 to 1.1

commons-lang from 2.0 to 2.1

xercesImpl from 2.4.0 to 2.6.2

xml-apis from 1.0.b2 to 2.0.2

ant from 1.5.1 to 1.6.5

[...]

Note that velocity is not updated to 1.4. I have heard rumors that ver-

sion 1.4 has a memory leak (but I have also heard rumors that the

current velocity version chokes in very large files, so not sure whether

the memory leak is not already there in 1.3.1). [...]

This discussion suggests that (i) sometimes the choice to ignore a new
available release of a library the client depends on (velocity 1.4 in this case)

23 http://tinyurl.com/p3nxkyc
24 http://mina.apache.org/
25 http://mina.apache.org/sshd-project/
26 http://tinyurl.com/nfrqfrf
27 http://db.apache.org/torque/torque-4.0/index.html
28 http://tinyurl.com/qjyw6u2
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is based on the fear to introduce errors in the client project, and (ii) even
when some e↵ort is spent to upgrade dependencies like in this case, not all
dependencies are upgraded together, as also highlighted by the quantitative
analysis we performed in RQ2.

Several discussions tagged as upgrade also confirmed the fact that potential
brakes in the client push away the client from upgrading their dependencies.
For instance, in the Apache Roller29 mailing list we found a discussion
30 on whether upgrading or not a dependency towards Apache log4j. In
particular, one of the Roller developers asked if it is the case to upgrade the
release of log4j used in Roller:

log4j is up to 1.2.12. We’re still using/distributing 1.2.4 in the trunk

(bound for 2.0). I think we should upgrade to 1.2.12 in the trunk.

The answer came from another Roller developer:

I recently tried to upgrade to 1.2.12 and found that there were some

incompatibilities with my config file. I forget what they were - but it

basically wasn’t a simple upgrade. For that reason, I’m currently using

1.2.11.

Thus, even if the Roller developers were going to issue their new release 2.0
and were conscious of using an old log4j release, the choice was to not risk
to perform a tricky upgrade.

The use tag has been assigned to 6% of the analyzed discussions, dealing on
how to use the library in the client, while only 3% of them were tagged with the
break tag, indicating discussions aimed at avoiding changes that could break
the dependency. These discussions generally happen in the library projects’
communication channels. For instance, in the Apache Geronimo mailing
list we found a discussion31 where a developer was alerting about the possible
issues that could be caused by the removal of a dependency in the project: This
change removed Sun SAAJ implementation dependency. That dependency is

currently needed and should not be removed (I’m pretty sure it will break CXF).
Note that Apache CXF32 is a client project using Geronimo and, among
the developers of these two projects, we found a dense network of communi-
cation mostly carried out by developers in overlap between the two projects.
We depicted this network in Fig. 10, where CFX’s developers are represented
with blue nodes, Geronimo’s developers with orange nodes, and developers in
overlap between the two projects are colored in yellow. An edge exists between
two developers if they exchanged at least two messages (i.e., the communica-
tion between them is not occasional). Blue edges are messages exchanged in the
CFX’s communication channels, while the red ones are messages exchanged
in the Geronimo’s communication channels. From Fig. 10 it is interesting to
notice that (i) most of the developers in overlap are hubs exchanging messages

29 http://roller.apache.org/
30 http://tinyurl.com/qz254l8
31 http://tinyurl.com/opmlu8z
32 http://cxf.apache.org/
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Fig. 10: Communication network between Geronimo and CFX developers.
CFX’s developers are shown in blue, Geronimo’s developers in orange, while
yellow circles are developers overlapping between the two projects.

with several other developers, (ii) most of the communications between the
two projects passes through the developers in overlap (i.e., the yellow nodes).

Finally, 36% of discussions were tagged as other, because they were related
to topics that cannot be placed in the previous discussed tags. Examples are
discussions related to missing references in the release bundles, to the possi-
bility of whether or not providing support to old releases of some clients, or to
legal issues. An example was a discussion started by an Apache Aperture
developer:

Hello Tika!

Hello Aperture!

We (the Aperture project) have recently updated the pdfbox to the cur-

rent trunk version. It seems that they’ve introduced a new dependency
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Table 8: Impacted source code components in client projects.

#Classes (%) #KLOC (%)
Mean 58 (5%) 65 (6%)
Median 6 (1%) 12 (1%)
St. Dev. 122 (9%) 14 (12%)
Min 1 (0%) 0.039 (0%)
Max 518 (41%) 77 (62%)

on the Java Advanced Imaging API (JAI). The problem is that JAI

imposes certain constraints on redistribution. [...]

Summary of RQ3. The manual analysis performed in the context of RQ3

showed that developers actively discuss about dependency management. Gen-
erally, this discussion is carried out by developers of the client projects mainly
discussing about problems due to the (fix ) of dependencies, and of the possi-
bility to whether or not upgrading a dependency. Results of RQ3 qualitatively
confirmed some of the findings of our RQ2, and in particular: (i) when client
projects upgrade their dependencies, they do not always perform all available
upgrades, and (ii) client projects tend to upgrade their dependencies when
bug-fixing activities have been performed.

3.4 RQ4: If a dependency is upgraded, to what extent would this impact on
the client project source code?

Table 8 reports descriptive statistics of the impacted source code of client
projects upgrading one of their dependencies. The values are reported in
terms of impacted number (percentage) of classes and number (percentage)
of KLOCs of the client project.

On average, the impacted source code of the client project is quite limited,
about 5% of the total number of classes and 6% of the KLOCs. This is quite
expected, since most the dependencies a client project has are just due to
few classes exploiting the services provided by this dependency. For instance,
all the dependencies towards the Apache Commons projects are generally
due to few methods in the client code exploiting the o↵ered services, like the
compressors and archivers services provided by the Apache Commons
Compress project to manipulate archive files, or the collection of I/O utilities
available in the Apache Commons IO project. Since these services support
the implementation of specific tasks, it is expected that they just impact on
classes having such tasks among their responsibilities.

Instead, there are some projects o↵ering very wide services exploited by a
great part of the client project source code. This consideration can be derived
by looking at the row “Max” of Table 8, reporting the maximum value of
impacted client source code we measured in our study. This value is referred
to a dependency that the project Apache Accumulo33 (client project) has

33 http://accumulo.apache.org/
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towards the project Apache Hadoop. Accumulo is a database system, while
Hadoop is a framework supporting distributed processing of large data sets
across clusters of computers using simple programming models. Accumulo
exhibits dependencies towards Hadoop in 518 of its 1,263 classes (41%), for
a total of 77 KLOCs impacted (62% of the total size). Other projects exhibit-
ing an high impact on the client code are Apache Tomcat34, impacting on
average 23% of the client projects KLOCs, and Apache MINA with an av-
erage of 10%. Again, both projects o↵er very generic services that could be
reasonably exploited by several classes in the client projects. In fact, Apache
Tomcat is an implementation of the Java Servlet and JavaServer Pages (JSP)
technologies, while Apache MINA is an application framework helping users
in developing high performance and high scalability network applications.

Summary of RQ4. Results highlight that the proportion of source code of
client projects impacted by changes in the projects they depend on is quite lim-
ited, around 5%. However, there are specific dependencies, generally towards
frameworks/libraries o↵ering very wide services, that could strongly impact
the client project source code when a dependency is upgraded.

4 Threats to Validity

This section discusses the threats that can a↵ect the validity of the achieved
results.

Threats to construct validity concern the relation between the theory and
the observation. They can be mainly due to imprecisions in the measurements
we performed. This is a summary of the main sources of imprecision:

– The mapping between dependencies declared within a project and other
projects was performed using a set of heuristics, as explained in Section
2.2. To cope with the imprecision of such heuristics, results were manually
verified. Still, human errors are possible in this manual checking.

– The analysis of licensing relies on the precision of Ninka, which is deemed
to be greater than 90% [18].

– In the analysis of the evolution of active developers in RQ1 and RQ2, we
cannot exclude that the projects also involved other contributors whose
activity is not evident from the versioning system commits.

– The fine-grained extraction of changes performed by using the MARKOS
code analyzer is not guaranteed to be 100% precise, especially due to the
use of a fingerprint-based approach to identify renaming/moving of code
components distinguishing them from the deletion of a component accom-
panied by the addition of a new one.

– The analysis of the nature of changes performed in RQ2 involved a man-
ual classification of releases. This could have lead to some subjectivity in
the classification. To avoid that, two of the authors performed the classi-
fication independently, and then discussed cases where their choices were
inconsistent.

34 http://tomcat.apache.org/
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– In RQ2, we identify whether a change is a bug fix or not using informa-
tion contained in the versioning system. Although the Apache (Bugzilla)
issue tracker has an explicit “Defect” value for the severity field, and Jira
always foresees a specific distinction between bug fixes and other changes,
imprecisions on such a classification are still possible [2].

– The analysis of developers’ communication performed to address RQ3 has
been conducted by considering, as communication means, project mailing
lists and issue reports. In many projects—and especially in worldwide-
distributed open source projects like the ones we analyzed—it is a consol-
idated practice to communicate through mailing lists and issue trackers.
However, we are aware that there could still be some hidden communication
[3] we might have missed in our analyses. A di↵erent matter concerns the
manual tagging of such a communication which, due to the large number of
emails/issues to be analyzed (7,695), was split between the two inspectors.
Although we are aware that mistakes could have occurred, both inspec-
tors agreed on guidelines to perform a classification, and they discussed
together unclear cases.

– The analysis of change impact done in RQ4 includes all client classes im-
porting an API class that underwent a change. To determine whether a
changed method was used or not, a fine-grained analysis would have been
necessary. However, this was not our intent. Instead, we were interested to
determine the potential set of clients for the changed API class, i.e., a set
of classes that might need some verification/testing activities.

Threats to internal validity concern factors internal to the study that could
influence our results. Such kind of threats typically do not a↵ect exploratory
studies like the one in this paper. The only case worthwhile of being discussed
is about RQ2 (reasons for upgrades) and to some extent RQ4 (why some
changes in libraries have more impact than others). In the first case, although
we have found some correlation between certain kinds of changes and up-
grades decisions, we cannot claim there is a cause-e↵ect relation. Nevertheless,
we manually inspected release notes to support our findings. In addition to
that, the large manual analysis of developers’ communication conducted in
the context of RQ3 provided a strong qualitative support to the quantitative
findings of RQ2. Last, but not least, in RQ2 we also checked whether simple
factors related to intrinsic projects’ characteristics could have been the main
reasons for our findings (rather than the other factors we observed), however
we did not find any empirical evidence of that.

Threats to conclusion validity concern the relationship between the treat-
ment and the outcome. The analyses performed in this paper mainly have an
observational nature, although we used, where appropriate (RQ2), statistical
procedures and e↵ect size measures to support our claims.

Threats to external validity concern the generalizability of our findings.
Such a generalizability is clearly limited to the ecosystem being analyzed,
i.e., Apache, and specifically Java projects of the Apache ecosystem. Also, in
terms of assessing dependency upgrades, such assessment is confined to within-
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ecosystem dependencies, as we are not interested to analyze dependencies to
projects that are not part of the ecosystem. Future studies need to be done to
investigate upgrades with respect to external dependencies too, and to repeat
the study on other ecosystems.

5 Related work

In this section, we discuss the related literature, focusing our attention on
(i) work studying software ecosystems and (ii) work observing the impact on
software evolution and stability of changes/deprecations of APIs.

5.1 Analysis of Software Ecosystems

In the last decade several software ecosystems have been studied from di↵erent
perspectives. Table 9 reports these studies, classifying them by (i) the ecosys-
tem being studied, (ii) the source of information exploited, (iii) the objectives
of the study, and (iv) the main findings.

One of the first software ecosystems subject of several empirical studies
has been the Debian Linux distribution [22,19,17]. Specifically, Godfrey et

al. [19] analyzed the size of the Linux operating system Kernel, observing
a super-linear rate growth for several years. Gonzalez-Barahona et al. [22]
found that the Debian Linux distribution has been doubling in size every
two years while the average size of its packages remained stable over time.
Also, they observed as the number of dependencies between packages increased
exponentially. German et al. [17] proposed a methodology and visualization
tool aimed at supporting the study of inter-dependencies in complex software
systems. The tool has been used to analyze the dependencies between projects
in the Debian Linux distribution. Capturing dependencies between projects in
an ecosystem is far from trivial [35] and it is the reason why several authors
focused their attention on methods for the extraction of dependencies in large
software ecosystems [33,17]. Similarly to what done in other studies, in the
context of our work we also exploited specific heuristics (see Section 2.2) to
identify the dependencies between projects.

Another software ecosystem that has been studied by several authors is
the Eclipse IDE. Wermelinger et al. [42,43] analyzed the evolution of the
Eclipse’s architecture and found that the success as application framework
for the Eclipse SDK mainly depends from the fact that it “follows several

practices that support sustainable architectural evolution” [43]. In particular,
the Eclipse developers manage APIs carefully, avoiding to break existing APIs
when issuing new releases. Mens et al. [34] found that the Eclipse core plug-
ins adhere to the laws of continuing change and growth, but not to the law
of increasing complexity. Businge et al. [7] analyzed the dependencies and the
survival of 467 Eclipse third-party plugins. They found that plugins depending
only on stable and supported Eclipse APIs have a very high source compatibil-
ity success rate. This means that third-party plugins that depend from stable
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Source Objectives Findings Ref
APACHE ECOSYSTEM

Versioning
System and
Mailing lists

Defining a set of invariant metrics
to detect “stagnant projects”.

Stagnant projects can be identified by measuring the
ratio of the e-mail exchanged in mailing lists and the
number of commits.

[14]

Versioning
System, Re-
lease Notes,
Issue Track-
ers, and
Mailing lists

Focus on projects dependency
management.

Clients tend to upgrade their dependencies when li-
braries are subject to bug fixes, while changes to in-
terfaces make the upgrade less appealing. Most of the
times the impact of upgrades is well-confined.

Our
Work

LINUX ECOSYSTEM
Versioning
System

Analysis of the evolution of the
Linux Kernel.

The size of the Linux Kernel has been growing at a
super-linear rate for several years.

[19]

Versioning
System

Analysis of the evolution of the
Debian Linux distribution

The overall size has been doubling every 2 years, while
the average size of packages remained stable. Instead,
the number of dependencies increased exponentially.

[22]

Versioning
System

Analysis of dependencies in the
Debian Linux distribution.

A methodology and visualization for studying inter-
dependencies of a complex software system.

[17]

SQUEAK ECOSYSTEM
Versioning
System

Recover dependencies between
the software projects of the
Squeak ecosystem.

Accurate detection of dependencies for Smalltalk. [33]

Versioning
System

Analysis of API changes in a soft-
ware ecosystem.

API changes caused by deprecation can have a very
large impact on the ecosystem in terms of the number
of changes needed to fix broken dependencies.

[37]

ECLIPSE ECOSYSTEM
Versioning
System

Analysis of the Eclipse architec-
ture.

The development follows a systematic process and
there is a stable architectural core that remains since
the first release.

[42,
43]

Versioning
System

Analysis of the evolution of
Eclipse core plugins.

Eclipse plugins adhere to the laws of continuing change
and growth, but not to the law of increasing complex-
ity.

[34]

Versioning
System

Analysis of the evolution of third-
party plugins.

Third-party plugins that depend from stable and sup-
ported Eclipse APIs have a higher compatibility suc-
cess rate than plugins depending on discouraged and
unsupported APIs.

[7]

Mailing lists
and issue
trackers

Analysis of developers’ productiv-
ity.

Adding new features to Eclipse slows down the bug
fixing process.

[28]

GNOME ECOSYSTEM
Versioning
System

Analysis of the active developers. The number of active developers increased until 2003,
remained stable until the 2008, and then decreased.

[20]

Versioning
System

Analysis of the ecosystem evolu-
tion.

A list of practices that could benefit both open and
commercial software development organizations.

[16]

Mailing lists
and issue
trackers

Analysis of the activities on
and contributors of the software
ecosystem.

GNOME contains both paid contributors and volun-
teers. Coding is the most preeminent activity in the
ecosystem.

[21,
30,
40]

Versioning
System

Analysis of cloning and copy-
ing operations between GNOME
Projects.

Larger clones exist between the sub-projects of
GNOME and more than 60% of the clone pairs can
be automatically separated into original and copy.

[17]

Versioning
System,
Mailing lists
and Issue
Trackers

Analysis of social processes in the
ecosystem.

Participants in such ecosystems may be able to
use a significant amount of transferrable knowledge
when moving between projects in the ecosystem and,
thereby, skip steps in the “onion model”

[27]

GNU R ECOSYSTEM
Versioning
System and
Mailing lists

Analysis of the di↵erences be-
tween code characteristics of core
and user-contributed packages.

User-contributed packages has been growing steadily
since the R conception at a significantly faster rate
than core packages.

[15]

GURUX ECOSYSTEM
Versioning
System and
Mailing lists

Analysis of the evolution. Supporting processes, guidelines and best practices for
building open source communities.

[29]

FIREFOX, UNITY, AND GOOGLE CHROME ECOSYSTEMS
Versioning
System

Analysis of how the software li-
censes are reported in software
ecosystems.

Software component licenses and the architectural
composition of a system help to better define the soft-
ware ecosystem “niche” in which a given system lies
(i.e., the license is wrong).

[38]

Table 9: Studies that analyzed software ecosystems.
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and supported Eclipse APIs have a higher source compatibility success rate
than plugins depending on discouraged and unsupported Eclipse non-APIs. In
addition, Businge et al. found that the majority of plugins hosted on Source-
Forge35 do not evolve beyond the first year of release while, Singh et al. [39]
observed how committers networks in SourceForge are small-world networks.

GNOME is another very well investigated software ecosystem [20,16,30,
31,40,21]. German et al. [16] distilled a list of practices that could benefit
both open and commercial software development organizations by studying
the GNOME ecosystem. For example, a careful coordination of the devel-
opment activities between the sub-projects belonging to the ecosystem can
be the one of the keys for the success of the di↵erent projects. Mens et al.

[21,40] studied the GNOME mailing lists and issue trackers observing that
GNOME contains both paid contributors and volunteers. Also, coding seems
to be the most preeminent activity in the ecosystem, followed by activities
such as translation and development documentation. In addition, members of
the GNOME community tend to specialize themselves in a limited number of
activity types [21]. Goeminne et al. [20] observed in the GNOME ecosystem a
variation trend for the number of active developers similar to the one we iden-
tified in the Apache Ecosystem. Specifically, after an initial increase of active
developers in the 1997-2003 time window, they found the developers base to
be almost stable until 2008. Then, they observed a decrease in the number of
active developers up to date.

German et al [15] studied the evolution of the statistical computing project
GNU R, with the aim of analyzing the di↵erences between code characteris-
tics of core and user-contributed packages. They found that the ecosystem of
user-contributed packages has been growing steadily since the R conception
at a significantly faster rate than core packages, yet each individual package
remains stable in size.

Scacchi et al [38] examined how the software licenses are reported in soft-
ware ecosystems and in particular, observe how software component licenses
and the architectural composition of a system help to better define the software
ecosystem “niche” in which a given system lies (i.e., the license is wrong).

Other than the analysis of ecosystems evolution, social/community aspects
of ecosystems (for example bug reports and/or mailing list tra�c between
developers teams) have also been analyzed [27,30,29,28]. Kidane et al. [28]
found that adding new features to Eclipse slows down the bug fixing process.

Yu et al. [44] studied the mailing lists of the Linux kernel, to analyze
di↵erent ecosystem collaboration patterns between companies. Jergensen et

al. [27] instead, analyzed multiple systems which have “common underlying
components, technology, and social norms”. They observed how participants
in such ecosystems may be able to use a significant amount of transferrable

35 http://sourceforge.net/
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knowledge when moving between projects in the ecosystem and, thereby, skip
steps in the “onion model”36

Annosi et al. [1] proposed a framework to support developers in the upgrade
of third-party components. The decision is driven by various factors, partially
related to the kind of change occurred in the component (as mined from release
notes or issue trackers), and partially on expert judgements collected within
the company. The work presented in this paper is complementary to the work
of Annosi et al., because it helps to identify what are the factors and events
that trigger component upgrades in a large software ecosystem.

Gala et al. [14] also analyze the Apache ecosystem proposing a set of “in-
variant metrics” in the domain of software projects. They found that metrics
measuring the proportion (or ratio) of the e-mails exchanged in mailing lists
and the total number of commits performed by developers can be useful to
identify stagnant projects and projects in danger of stagnation. In our study,
we also observed that project’s stagnation is one of the factors that reduces
the active developers’ base.

In a previous work [4] (extended by the present paper), we performed a first
analysis of the Apache ecosystem, highlighting the exponential growth of the
ecosystem size, investigating some of the factors that could a↵ect dependency
upgrades, and analyzing the impact of upgrades on clients’ code. With respect
to our previous work [4], this paper deepens the analysis of the ecosystem
evolution (e.g., analyzing the evolution of the number of developers). Also,
it considers several additional factors that could have influenced dependency
upgrades, not considered in the previous paper (e.g., project characteristics,
nature of releases, developers’ overlap between client projects and library).
Finally, it reports a large qualitative analysis of how dependency upgrades are
discussed over developers’ communication.

5.2 Analysis of API Changes

From a theoretical point of view, the API of a component in a software system
should never change. Successful software systems try to avoid change in the
APIs that can impact the stability of software components [43]. However, what
happens in practice is that when a new version of a software component is
released, it is very likely that its interface changes. This requires projects that
use the component to be changed before the new release of the component can
be used. How and why API change during software evolution has been studied
by several authors. Dig et al. [13] studied the changes between two major
releases of four frameworks (one proprietary and three open-source) and one

36 The onion model is a socialization process where newcomers join a project by first
contributing through mailing list discussions and bug trackers and they advance to more
important roles contributing where they can improve the code and making design decisions.
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library written in Java. They found that on average 90% of the API breaking
changes37 are represented by refactoring operations.

Hou et al. [25] analyzed the evolution of AWT/Swing at the package and
class level. They found that—during 11 years of the JDK release history (i.e.,
since JDK 1.0 to Java SE 6)—the number of changed elements was relatively
small compared to the size of the whole API, and the majority of them hap-
pened in release 1.1. Thus, the main conclusion of their study is that the ini-
tial design of the APIs contributes to the smooth evolution of the AWT/Swing
API. Raemaekers et al. [36] studied changes in APIs to measure the stability of
the Apache Commons library. Their findings suggested that a relatively small
number of new methods were added in each snapshot to the Commons Log-
ging library, and there is more work going on in new methods of Common
Codec than in old ones.

Recently, Robbes et al. [37] observed how much the API of a framework
(or library) changes. They studied API deprecations that led to ripple e↵ects
across an entire ecosystem. The results showed that a number of API changes
caused by deprecation can have a very large impact on the ecosystem and
consequently on projects or developers that are impacted by the change, or
the measure of the overall number of changes.

Changes in APIs and frameworks require the adaptation of clients, that
can, sometimes, be automated. To this aim, Degenais and Robillard [11] pro-
posed SemDi↵, a tool to recommend client adaptation required when the
used framework evolve. The authors evaluated SemDi↵ on the evolution of
the Eclipse-JDT framework and three of its clients.

We share with the aforementioned papers the need for studying how the
evolution of projects used as libraries in software ecosystems impacts on the
evolution of client projects. However, instead of proposing how client projects
should be adapted, we aimed at analyzing to what extent are dependencies
upgraded—i.e., towards a new release of the target project—and what are
the drivers of such upgrades. Our study provides some insights on the de-
sign of recommendation systems for supporting developers in the activity of
library/component upgrade.

6 Conclusion and Future Work

This paper investigated on the evolution of project inter-dependencies in the
Java subset of the Apache ecosystem, comprising a total of 1,964 releases
of 147 projects, for 14 years. First, we investigated how the ecosystem has
grown over time in size, number of projects, dependencies between projects,
and number of developers. After that, we analyzed several factors that could
have influenced the upgrade (or not) of a dependency between a project and
a library it uses. Also, we qualitatively investigated, by looking into mailing
list and issue report discussions, how developers discussed the opportunity to

37 API breaking changes would cause an application built with an older version of the
component to fail under a newer version.
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perform an upgrade and its possible impacts/risks. Finally, we assessed the
potential impact of each upgrade in terms of classes using the dependency.

The study results indicated that:

– The ecosystem size exponentially grows over time, and consequentially the
dependencies between projects grow too. The number of active developers
involved in the project grows until a certain year (2006). Then, it remains
stable because most of the new projects (many of which part of theApache
Commons) involve developers already active in the ecosystem). Finally,
over the last few years (since 2011) we observe a decrease in the number
of active developers. This can be explained because very few projects have
been added to the ecosystem during such a period, while the size growth is
mainly due to the evolution of existing projects. The latter could, however,
concern only some specific features and therefore be performed by a subset
of developers only.

– For what concerns the factors that could have influenced dependency up-
grades, we found that this does not really depend on project-level charac-
teristics such as project size or fan-in and fan-out. Instead, we found that
the kinds of changes performed between a release and the subsequent one
likely correlate with the upgrade. That is, on the one hand client projects
are more willing to upgrade a library when its new release involve a sub-
stantial number of bug fixes. On the other hand, changes to API interfaces
tend to discourage upgrades because it can require non-negligible changes
to the client source code. These findings have been reflected from the dis-
cussions developers had over mailing lists and issue trackers.

– In general, the studied projects have been designed so to have a limited
impact (about 5%) from changes in libraries form which they depend. How-
ever, some libraries (above all frameworks) have a large impact on their
client projects and their upgrades need to be carefully pondered.

This work has mainly an observational nature, i.e., it aimed at empirically
investigating a phenomenon—dependency upgrades in a software ecosystem—
-from both quantitative and qualitative point-of-view. Nevertheless, there are
di↵erent possible uses one can make of the results of this paper. First, the
paper highlights that the dependency phenomenon has an exponential growth
and should therefore carefully be considered by developers contributing to
the ecosystem. Second, it provides an overview of possible factors that could
influence dependency upgrades, with indications of the role played by such
factors in the Apache ecosystem, and of how the main reasons for upgrading
or not were discussed by developers.

Future work could start from the observations made in this paper to build
recommenders aimed at supporting developers in the complex dependency
upgrade decision making activity. Clearly, such recommenders should combine
a careful analysis of the aforementioned factors with an analysis of release notes
to understand the pros and cons of upgrades. Also, our findings on developers’
discussions can represent the first step toward the building of an ontology of
concepts that can be used to analyze and categorize discussions. Finally, it



How the Apache Community Upgrades Dependencies: An Evolutionary Study? 41

is also worthwhile to replicate this study on other ecosystems, possibly also
considering factors that were not investigated in this work.
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